MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic Time Series Prediction

混乱的 计算机科学 人工神经网络 时间序列 模糊逻辑 循环神经网络 系列(地层学) 人工智能 机器学习 生物 古生物学
作者
Hamid Nasiri,Mohammad Mehdi Ebadzadeh
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:507: 292-310 被引量:81
标识
DOI:10.1016/j.neucom.2022.08.032
摘要

Chaotic time series prediction, a challenging research topic in dynamic system modeling, has drawn great attention from researchers around the world. In recent years extensive researches have been done on developing chaotic time series prediction methods, and various models have been proposed. Among them, recurrent fuzzy neural networks (RFNNs) have shown significant potential in this area. Most of the proposed RFNNs learn a single function, but when dealing with chaotic time series, different outputs may be generated for a specific input based on the system’s state. So, a network is required that can learn multiple functions simultaneously. Based on this concept, a novel multi-functional recurrent fuzzy neural network (MFRFNN) is proposed in this paper. MFRFNN consists of two fuzzy neural networks with Takagi-Sugeno-Kang fuzzy rules, one is used to produce the output, and the other to determine the system’s state. There is a feedback loop between these two networks, which makes MFRFNN capable of learning and memorizing historical information of past observations. Employing the states allows the proposed network to learn multiple functions simultaneously. Moreover, a new learning algorithm, which employs the particle swarm optimization algorithm, is developed to train the networks’ weights. The effectiveness of MFRFNN is validated using the Lorenz and Rossler chaotic time series and four real-world datasets, including Box–Jenkins gas furnace, wind speed prediction, Google stock price prediction, and air quality index prediction. Based on the root mean square error, the proposed method shows a decrease of 35.12%,13.95%, and 49.62% from the second best methods in the Lorenz time series, Box–Jenkins gas furnace, and wind speed prediction dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑完成签到,获得积分10
1秒前
brick2024完成签到,获得积分10
1秒前
四季夏目发布了新的文献求助10
1秒前
田様应助天空采纳,获得10
1秒前
Lucas应助食分子采纳,获得10
2秒前
美海与鱼完成签到,获得积分10
2秒前
木悠完成签到,获得积分10
2秒前
suiwuya完成签到,获得积分10
2秒前
3秒前
WXY完成签到,获得积分10
4秒前
zyf完成签到,获得积分10
4秒前
鱼女士完成签到,获得积分10
4秒前
小二郎应助FFFFFFG采纳,获得10
4秒前
吴3L完成签到,获得积分10
5秒前
老苍完成签到,获得积分10
5秒前
行走完成签到,获得积分10
5秒前
浪子发布了新的文献求助10
6秒前
xiuxue424完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
星光完成签到,获得积分10
6秒前
风之圣痕完成签到,获得积分10
6秒前
Starain完成签到,获得积分10
7秒前
YingxueRen完成签到,获得积分10
7秒前
限量版小祸害完成签到 ,获得积分10
7秒前
Mr权完成签到,获得积分10
7秒前
文静鸡翅完成签到 ,获得积分10
7秒前
7秒前
Adler完成签到,获得积分10
8秒前
zl完成签到 ,获得积分10
8秒前
杨子怡完成签到 ,获得积分10
8秒前
千寻发布了新的文献求助10
8秒前
执意完成签到 ,获得积分10
9秒前
May完成签到,获得积分10
9秒前
星星会开花完成签到,获得积分10
9秒前
9秒前
取名字脑细胞全废完成签到,获得积分10
9秒前
dahuihui完成签到,获得积分10
9秒前
标致雪糕完成签到,获得积分10
9秒前
YB完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5021217
求助须知:如何正确求助?哪些是违规求助? 4259503
关于积分的说明 13273212
捐赠科研通 4065406
什么是DOI,文献DOI怎么找? 2223541
邀请新用户注册赠送积分活动 1232528
关于科研通互助平台的介绍 1156385