Cross-sensor remote sensing imagery super-resolution via an edge-guided attention-based network

计算机科学 GSM演进的增强数据速率 遥感 增采样 人工智能 图像传感器 特征(语言学) 残余物 计算机视觉 图像(数学) 算法 地理 语言学 哲学
作者
Zhonghang Qiu,Huanfeng Shen,Linwei Yue,Guizhou Zheng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 226-241 被引量:17
标识
DOI:10.1016/j.isprsjprs.2023.04.016
摘要

The deep learning based super-resolution (SR) methods have recently achieved remarkable progress in the reconstruction of ideally simulated high-quality remote sensing image datasets. However, due to the large variation in image quality caused by the complex degradation factors, their performance decreases dramatically on real-world images acquired by different satellite sensors. To this end, we propose a cross-sensor SR framework that consists of a cross-sensor degradation modeling strategy for bridging the gap between the images obtained by the source and target sensors, and an edge-guided attention-based SR (EGASR) network to promote the learning of high-frequency feature representation. Specifically, we build a degradation pool on the low-resolution (LR) target sensor to produce a degraded training dataset simulated from the high-resolution (HR) images obtained by the source sensor. Furthermore, the EGASR network, which employs the edge-guided residual attention block (EGRAB) to introduce implicit edge prior to enhance edge-related information, is embedded in the cross-sensor SR framework for reconstructing HR results with sharp details. The proposed method is applied on images from the Chinese Gaofen (GF) satellite sensors and compared to several representative SR methods. An ideally simulated GF-2 LR/HR image set with only downsampling considered is first used to evaluate the effectiveness of the proposed EGASR network. Moreover, GF-2/GF-1 and GF-2/GF-6 cross-sensor SR datasets are constructed by synthesizing GF-2 degraded image pairs with the degradation pools estimated from the GF-1 and GF-6 images, respectively. The results show that: 1) the proposed EGASR model shows superiority in reconstructing textural details and edge features, and achieves the best results among the state-of-art SR methods involved in comparison; 2) the cross-sensor SR framework significantly promotes the model’s ability to super-resolve real-world LR images acquired by the target satellite sensors, e.g., the NIQE values are improved by at least 30% and 34% on average with respect to other comparative methods for GF-2/GF-1 and GF-2/GF-6 datasets in the real experiments, respectively. Code is available at https://github.com/zhonghangqiu/EGASR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梓歆发布了新的文献求助10
刚刚
111111完成签到,获得积分10
刚刚
宋虹完成签到,获得积分20
刚刚
222完成签到,获得积分10
刚刚
毛毛完成签到,获得积分10
刚刚
刚刚
哈比完成签到,获得积分10
刚刚
吕智笛完成签到,获得积分20
1秒前
铁鱼关注了科研通微信公众号
2秒前
enjoy发布了新的文献求助10
2秒前
2秒前
Nancy发布了新的文献求助10
2秒前
HY完成签到 ,获得积分10
2秒前
小天竺1212完成签到,获得积分10
2秒前
CodeCraft应助Willer采纳,获得10
3秒前
3秒前
831143完成签到 ,获得积分0
3秒前
3秒前
丁一完成签到,获得积分20
4秒前
我还能学完成签到,获得积分20
4秒前
王哈哈完成签到,获得积分10
5秒前
chen发布了新的文献求助10
5秒前
弹指一挥间完成签到,获得积分10
5秒前
yy完成签到 ,获得积分0
5秒前
顾君如完成签到,获得积分10
6秒前
阔达的扬完成签到,获得积分10
6秒前
liu完成签到 ,获得积分10
6秒前
勤劳半青完成签到,获得积分10
6秒前
Lyric完成签到,获得积分20
7秒前
orixero应助ling采纳,获得10
8秒前
。。。完成签到,获得积分10
8秒前
顾矜应助紫金之恋采纳,获得10
8秒前
研友_ZAyqJZ完成签到,获得积分10
8秒前
我还能学发布了新的文献求助30
8秒前
研友_LpvQlZ完成签到,获得积分10
8秒前
meili完成签到,获得积分10
8秒前
昕阳完成签到,获得积分10
9秒前
吳某人完成签到,获得积分10
10秒前
evelyn完成签到 ,获得积分10
10秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795794
求助须知:如何正确求助?哪些是违规求助? 3340791
关于积分的说明 10302239
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677651
邀请新用户注册赠送积分活动 805524
科研通“疑难数据库(出版商)”最低求助积分说明 762642