Enhancing Li-ion Transport in Solid Electrolytes by Confined Water

电解质 电化学窗口 离子电导率 快离子导体 电化学 材料科学 电导率 离子 化学工程 氧化物 离子键合 固溶体 无机化学 纳米技术 化学 电极 有机化学 冶金 物理化学 工程类
作者
Yutong Li,Shitong Wang,Jin Leng,Zunqiu Xiao,Zhongtai Zhang,Tao Gao,Zilong Tang
标识
DOI:10.26434/chemrxiv-2022-jgxc7
摘要

Developing new oxide solid electrolytes with fast Li-ion transport and high stability is an important step to realize high-performance solid-state Li-ion batteries. Hydrates materials containing confined water widely exist in nature or can be easily synthesized. However, they have seldom been explored as Li solid electrolytes due to the stereotype that the presence of water limits the electrochemical stability window of a solid electrolyte. In this work, we demonstrate that confined water can enhance Li-ion transport while not compromising the stability window of solid electrolytes using Li-H-Ti-O quaternary compounds as an example system. Three Li-H-Ti-O quaternary compounds containing different amounts of confined water were synthesized, and their ionic conductivity and electrochemical stability are compared. The compound contains nano-confined pseudo-water is demonstrated to have an ionic conductivity that is 2~3 order of magnitude higher than the water-free Li4Ti5O12 and similar stability window. A solid-state battery is made with this new compound as the solid electrolyte, and good rate and cycling performance are achieved, which demonstrates the promise of using such confined-water-containing compounds as Li-ion solid electrolytes. The knowledge and insights gained in this work open a new direction for designing solid electrolytes for future solid-state Li-ion batteries. Broadly, by confining water into solid crystal structures, new design freedoms for tailing the properties of ceramic materials are introduced, which creates new opportunities in designing novel materials to address critical problems in various engineering fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助gg采纳,获得10
1秒前
1秒前
科研小白完成签到,获得积分10
2秒前
Rollei给Rollei的求助进行了留言
3秒前
uggvuit完成签到,获得积分10
3秒前
4秒前
Zzqh发布了新的文献求助10
4秒前
5秒前
愉快天亦完成签到,获得积分10
5秒前
油点小鳄发布了新的文献求助10
5秒前
指定能行完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
Hello应助有魅力的凝云采纳,获得10
9秒前
火星上书琴完成签到 ,获得积分10
9秒前
科研小奶狗完成签到,获得积分10
10秒前
10秒前
甄遥发布了新的文献求助10
10秒前
10秒前
烟花应助紧张的南风采纳,获得10
10秒前
橘灯发布了新的文献求助10
11秒前
11秒前
Sid应助王国奥采纳,获得60
12秒前
璐洋发布了新的文献求助10
12秒前
13秒前
香蕉觅云应助lsls采纳,获得10
13秒前
迷路颜发布了新的文献求助10
14秒前
Maxwell发布了新的文献求助20
15秒前
共享精神应助Baneyhua采纳,获得10
16秒前
16秒前
16秒前
深情安青应助往往小陈采纳,获得10
17秒前
Lucas应助科研小奶狗采纳,获得10
18秒前
嘉言完成签到,获得积分10
19秒前
畑鹿惊应助祝垚采纳,获得10
19秒前
Allen完成签到,获得积分10
20秒前
20秒前
英姑应助lululala采纳,获得10
22秒前
bowen完成签到,获得积分20
23秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915612
求助须知:如何正确求助?哪些是违规求助? 3461081
关于积分的说明 10915414
捐赠科研通 3187991
什么是DOI,文献DOI怎么找? 1762213
邀请新用户注册赠送积分活动 852684
科研通“疑难数据库(出版商)”最低求助积分说明 793530