Landslide mapping based on a hybrid CNN-transformer network and deep transfer learning using remote sensing images with topographic and spectral features

山崩 计算机科学 学习迁移 分割 遥感 人工智能 深度学习 卷积神经网络 地图学 模式识别(心理学) 地质学 地理 地震学
作者
Lei Wu,Rui Liu,Nengpan Ju,Ao Zhang,Jingsong Gou,Guolei He,Yuzhu Lei
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:126: 103612-103612 被引量:22
标识
DOI:10.1016/j.jag.2023.103612
摘要

Landslides frequently cause serious property damage and casualties. Therefore, it is crucial to have rapid and accurate landslide mapping (LM) to support post-earthquake landslide damage assessment and emergency rescue efforts. Many studies have been conducted in recent years on the application of automatic LM methods using remote sensing images (RSIs). However, existing methods face challenges in accurately distinguishing landslides due to the problems of large differences in features and scales among landslides, as well as similarities among different ground objects in optical RSIs. Here, we propose a semantic segmentation model called SCDUNet++, which combines the advantages of convolutional neural network (CNN) and transformer to enhance the discrimination and extraction of landslide features. Then, we constructed a multi-channel landslide dataset in the Luding and Jiuzhaigou earthquake areas using Sentinel-2 and NASADEM data. We evaluated the performance of SCDUNet++ on this dataset. The results showed that SCDUNet++ can extract and fuse spectral and topographic information more effectively. Compared with other state-of-the-art models, SCDUNet++ achieved the highest IoU and F1 score in all four test areas. In addition, the models achieved significant improvements in mapping the landslides of the Jiuzhaigou area after knowledge transfer and fine-tuning. Compared with direct prediction, eight models, namely DeepLabv3+, Segformer, TransUNet, SwinUNet, STUNet, UNet, UNet++, and SCDUNet++, demonstrated improvements in IoU ranging from 8.33% to 27.5% and F1 from 6.58% to 23.67% after implementing deep transfer learning (DTL). This finding highlights the significant practicality of using DTL for cross-domain LM in data-poor areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助趙途嘵生采纳,获得10
刚刚
HYCT发布了新的文献求助10
1秒前
2秒前
2秒前
小柚完成签到,获得积分10
2秒前
3秒前
庸人自扰发布了新的文献求助10
4秒前
dahuang发布了新的文献求助10
4秒前
可可完成签到,获得积分10
4秒前
4秒前
yoloooooo发布了新的文献求助10
5秒前
顾矜应助虚心天思采纳,获得10
5秒前
EdRefrain完成签到,获得积分10
5秒前
xiyuexue完成签到,获得积分10
5秒前
semigreen发布了新的文献求助10
6秒前
天天开心完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
7秒前
7秒前
QUEEN发布了新的文献求助10
7秒前
慕青应助优雅的白山采纳,获得10
7秒前
7秒前
8秒前
坚定小翠完成签到,获得积分10
8秒前
8秒前
快乐水完成签到,获得积分10
9秒前
ry发布了新的文献求助10
9秒前
dududu发布了新的文献求助10
9秒前
Raymond完成签到,获得积分10
10秒前
10秒前
11秒前
搞怪玩家完成签到,获得积分10
12秒前
12秒前
13秒前
xinxing1010发布了新的文献求助10
13秒前
13秒前
兴奋荟发布了新的文献求助10
13秒前
13秒前
丰知然应助11采纳,获得10
13秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828574
求助须知:如何正确求助?哪些是违规求助? 3371011
关于积分的说明 10465801
捐赠科研通 3090912
什么是DOI,文献DOI怎么找? 1700600
邀请新用户注册赠送积分活动 817934
科研通“疑难数据库(出版商)”最低求助积分说明 770588