超级电容器
材料科学
纳米技术
储能
电极
执行机构
纳米孔
电化学
纳米材料
离子液体
电化学储能
功率密度
电化学能量转换
表面工程
分子工程
生物电子学
相(物质)
软机器人
弯曲
工作(物理)
机械能
人工肌肉
离子键合
可穿戴技术
光电子学
可穿戴计算机
智能材料
数码产品
作者
Manmatha Mahato,Sanghee Nam,Geetha Valurouthu,Hyunjoon Yoo,Mousumi Garai,Ji‐Seok Kim,Woong Oh,Jawon Ha,Vipin Kumar,Chi Won Ahn,Yury Gogotsi,Il‐Kwon Oh
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-07-01
卷期号:19 (28): 25757-25769
被引量:1
标识
DOI:10.1021/acsnano.5c04154
摘要
Developing multifunctional nanomaterials for soft electrochemical actuators and energy storage devices is crucial for advancing next-generation soft robotics, wearable electronics, and bioinspired technologies. However, existing electrode materials face fundamental trade-offs among electronic conductivity, charge storage capacity, and ion transport efficiency. Here, we report a molecularly engineered hybrid nanoarchitecture that achieves the physicochemical stabilization of MXene terminals by the in situ growth of 4H-pyran functionalized, electronically conjugated covalent-triazine frameworks (MXene-CTF). The integration of MXene and CTFs forms a synergistic active electrode for superior supercapacitors and actuators by offering significantly enlarged interactive surface areas, a well-developed network of nanoporous channels, and enhanced electrical conductivity. The MXene-CTF electrode provides an eminent energy density of 159.8 Wh kg-1 at a power density of 150 W kg-1 in a supercapacitor configuration with a nonaqueous ionic liquid electrolyte. Also, it achieves a bending strain of 1.1% and a blocking force of 5.8 mN, with a rapid response time of 1.4 s and a phase delay of 0.15 rad under an ultralow input potential of 0.5 V in a soft actuator configuration. This work unveils a strategy for the molecular-level synergistic integration of MXene with CTFs, offering a promising pathway for the development of high-performance energy storage and electrochemical actuation technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI