Spatio-temporal feature extraction network based multi-performance indicators synergetic monitoring method for complex industrial processes

计算机科学 数据挖掘 过程(计算) 子空间拓扑 领域(数学) 人工智能 特征提取 依赖关系(UML) 模式识别(心理学) 机器学习 数学 操作系统 纯数学
作者
Chi Zhang,Jie Dong,Kaixiang Peng,Ruitao Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:257: 125052-125052
标识
DOI:10.1016/j.eswa.2024.125052
摘要

In the context of smart manufacturing, modern industrial processes are becoming increasingly complex in terms of process flows, product varieties, and performance indicators (PIs). Performance-driven process monitoring attracts extensive attentions in recent years. However, most methods require spatio-temporal correspondence between process variables and PIs, and rarely consider the correlation among various PIs. In this paper, a spatio-temporal feature extraction network-based multi-performance indicators synergetic monitoring framework is presented. Firstly, considering the missing data in PI measurements, a weighted sum of tensor nuclear norm (WSTNN) based batch-process data completion approach is developed, which can adeptly handle local missing and incomplete data issues and establish the spatio-temporal correspondence for subsequent modeling. Secondly, for a specific PI, a new canonical variate analysis embedded spatio-temporal convolutional network (CVA-STCN) is designed to extract the PI-related features with spatio-temporal dependency. Thirdly, considering the dynamic interaction of multiple PIs, a third-order feature tensor is established to perform the future fusion, and the correlations among various PI-related features are explored via tensor decomposition. Finally, a hierarchical multi-performance indicators synergetic monitoring model is developed over several subspaces. The proposed method is verified on Tennessee Eastman process and an actual hot strip mill process. Overall, the monitoring performance of the proposed method outperforms the traditional ones, in terms of higher fault detection rates and lower false alarm rates. Moreover, the information provided by the multi-subspace synergetic monitoring charts can offer valuable guidance to field engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李鹏辉完成签到 ,获得积分10
1秒前
善良的诗珊完成签到 ,获得积分10
6秒前
7秒前
xinyueyue完成签到,获得积分10
8秒前
dyyisash完成签到 ,获得积分10
11秒前
孙燕应助jam采纳,获得10
11秒前
12秒前
12秒前
依古比古完成签到 ,获得积分10
13秒前
14秒前
ling_lz完成签到,获得积分10
15秒前
飞快的笑容完成签到,获得积分20
16秒前
sam发布了新的文献求助10
18秒前
文鞅发布了新的文献求助10
18秒前
周老八发布了新的文献求助10
18秒前
li2000722完成签到 ,获得积分10
18秒前
smile完成签到,获得积分10
19秒前
所所应助TTT0530采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
23秒前
冰魂应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
123完成签到,获得积分10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
24秒前
Ava应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得30
25秒前
dox应助科研通管家采纳,获得10
25秒前
JamesPei应助泡沫没有冰采纳,获得10
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843657
求助须知:如何正确求助?哪些是违规求助? 3385947
关于积分的说明 10543274
捐赠科研通 3106748
什么是DOI,文献DOI怎么找? 1711147
邀请新用户注册赠送积分活动 823921
科研通“疑难数据库(出版商)”最低求助积分说明 774390