Augmenting therapeutic protein production in CHO cells: A proline‐based selection strategy for enhanced productivity and product quality

作者
Bin Zhao,Boya Zhang,Yanshen Kang,Shenghai Liu,Zhangying Jia,Chenlin Lu,Yajing Cao,April Xu,Kyu-sung Lee,Zheng Zhang,Jing Song
出处
期刊:Biotechnology Progress [Wiley]
标识
DOI:10.1002/btpr.70091
摘要

Abstract Chinese hamster ovary (CHO) cells have emerged as the predominant mammalian host for the production of therapeutic recombinant proteins, including monoclonal antibodies (mAbs), bispecific antibodies (bsAbs), and fusion proteins. To meet the growing demand for biologics and reduce manufacturing costs, the exploitation of efficient cell line development platforms is essential. Over the past decades, various selection markers, such as dihydrofolate reductase (DHFR), glutamine synthetase (GS), and antibiotic resistance genes, have been widely utilized in the development of production cell lines. In this study, we introduce the proline selection system, an alternative metabolic selection strategy, as an efficient approach to optimize our CHO cell line development platform. By employing yeast PRO1 and PRO2 genes as selection markers, proline selection effectively complements GS selection to establish high‐producing cell lines for both mAbs and bsAbs. In particular, the integration of PRO1 and PRO2 genes into a single plasmid, in conjunction with the GS gene, significantly enhances productivity for asymmetric molecules. Optimized chain configuration across proline and GS selection plasmids can further boost protein yield. Additionally, the overexpression of regulator proteins can be leveraged with proline selection to enhance antibody production or fine‐tune product quality. Taken together, the incorporation of proline selection into CHO cell line development, particularly when combined with GS selection, provides a consistent and streamlined strategy to meet the growing demand for high‐quality biologics in the pharmaceutical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭航完成签到,获得积分10
1秒前
鲸落发布了新的文献求助30
1秒前
科研临时工完成签到,获得积分10
1秒前
DongWei95完成签到,获得积分10
1秒前
丘比特应助Sakura采纳,获得10
2秒前
3秒前
3秒前
3秒前
赘婿应助凄凉山谷的风采纳,获得10
4秒前
混子华完成签到,获得积分10
4秒前
小五完成签到,获得积分10
4秒前
西江月完成签到,获得积分10
4秒前
5秒前
多多关注了科研通微信公众号
5秒前
6秒前
烟尘发布了新的文献求助10
6秒前
7秒前
雪花发布了新的文献求助10
8秒前
9秒前
吴晨曦发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
hiter发布了新的文献求助50
10秒前
Hilda007发布了新的文献求助10
10秒前
rr发布了新的文献求助10
11秒前
YTT发布了新的文献求助10
11秒前
11秒前
诚心的誉应助687采纳,获得10
11秒前
dangniuma发布了新的文献求助10
12秒前
Sakura发布了新的文献求助10
13秒前
14秒前
14秒前
田様应助zzr采纳,获得10
14秒前
FashionBoy应助小丑采纳,获得30
14秒前
14秒前
14秒前
研究生发布了新的文献求助10
14秒前
15秒前
丘比特应助芒果采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436885
求助须知:如何正确求助?哪些是违规求助? 4548752
关于积分的说明 14216335
捐赠科研通 4469149
什么是DOI,文献DOI怎么找? 2449356
邀请新用户注册赠送积分活动 1440294
关于科研通互助平台的介绍 1416755