Top-down specific preparatory activations for selective attention and perceptual expectations

心理学 认知 感知 认知心理学 提示语 相关性(法律) 神经影像学 刺激(心理学) 神经科学 政治学 法学
作者
José M.G. Peñalver,David López-García,Carlos González‐García,Blanca Aguado-López,J. M. Górriz,Marı́a Ruz
出处
期刊:NeuroImage [Elsevier]
卷期号:271: 119960-119960 被引量:12
标识
DOI:10.1016/j.neuroimage.2023.119960
摘要

Proactive cognition brain models are mainstream nowadays. Within these, preparation is understood as an endogenous, top-down function that takes place prior to the actual perception of a stimulus and improves subsequent behavior. Neuroimaging has shown the existence of such preparatory activity separately in different cognitive domains, however no research to date has sought to uncover their potential similarities and differences. Two of these, often confounded in the literature, are Selective Attention (information relevance) and Perceptual Expectation (information probability). We used EEG to characterize the mechanisms that pre-activate specific contents in Attention and Expectation. In different blocks, participants were cued to the relevance or to the probability of target categories, faces vs. names, in a gender discrimination task. Multivariate Pattern (MVPA) and Representational Similarity Analyses (RSA) during the preparation window showed that both manipulations led to a significant, ramping-up prediction of the relevant or expected target category. However, classifiers trained with data from one condition did not generalize to the other, indicating the existence of unique anticipatory neural patterns. In addition, a Canonical Template Tracking procedure showed that there was stronger anticipatory perceptual reinstatement for relevance than for expectation blocks. Overall, the results indicate that preparation during attention and expectation acts through distinguishable neural mechanisms. These findings have important implications for current models of brain functioning, as they are a first step towards characterizing and dissociating the neural mechanisms involved in top-down anticipatory processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助西啃采纳,获得10
刚刚
科研通AI6应助哎呦魏采纳,获得10
刚刚
刚刚
叶暖完成签到,获得积分20
刚刚
Turnbackt1me完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
xiaowang发布了新的文献求助10
刚刚
烟花应助bmdeisler采纳,获得10
刚刚
1秒前
1秒前
月圆夜完成签到,获得积分10
1秒前
顾矜应助小白鸽采纳,获得10
1秒前
陈末应助两院候选人采纳,获得10
2秒前
2秒前
小古完成签到,获得积分10
3秒前
6666hhhhhh发布了新的文献求助10
3秒前
客厅狂欢完成签到,获得积分10
3秒前
3秒前
3秒前
赵yy应助甜美的安南采纳,获得10
3秒前
细心的盼易完成签到,获得积分10
3秒前
Jouleken完成签到,获得积分0
3秒前
bai完成签到,获得积分10
4秒前
sakiecon发布了新的文献求助30
4秒前
小马甲应助中心湖小海棠采纳,获得10
4秒前
香蕉觅云应助苏打采纳,获得10
4秒前
酷炫的傲易完成签到,获得积分10
4秒前
科研通AI6应助业伟采纳,获得10
4秒前
破败王给破败王的求助进行了留言
5秒前
科研通AI6应助凉凉盛夏采纳,获得10
5秒前
曾馨慧发布了新的文献求助10
5秒前
5秒前
Janice发布了新的文献求助10
5秒前
ss13l完成签到,获得积分10
5秒前
Zhu发布了新的文献求助20
5秒前
6秒前
ZY发布了新的文献求助10
6秒前
背后玉米完成签到,获得积分20
6秒前
任性雨柏完成签到,获得积分10
7秒前
白桃乌龙完成签到,获得积分0
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427755
求助须知:如何正确求助?哪些是违规求助? 4541634
关于积分的说明 14177771
捐赠科研通 4459194
什么是DOI,文献DOI怎么找? 2445264
邀请新用户注册赠送积分活动 1436456
关于科研通互助平台的介绍 1413797