已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A study on the mechanisms of teachers’ academic emotions and motivational beliefs on learning engagement in the context of online training

心理学 背景(考古学) 学生参与度 期望理论 应用心理学 数学教育 社会心理学 古生物学 生物
作者
Dongdong Zhang,Siyuan Gao,Ren Liu
出处
期刊:Frontiers in Psychology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fpsyg.2023.1255660
摘要

In the context of digital transformation of education, online training is one of the important ways for teachers to improve their professionalism and promote the quality of education. However, studies have shown that teachers' online training suffers from insufficient learning engagement and other problems, so it is crucial to explore the factors influencing teachers' learning engagement and their mechanisms of action in the context of online training.Taking 589 teachers who participated in online training as the research subjects, the study used the methods of survey research and statistical analysis to explore the influence mechanism of teachers' academic emotions and motivational beliefs on online learning engagement based on the dual perspectives of control value theory and expectancy-value theory.The study found that: (1) positive-high arousal academic emotions, training self-efficacy, and training task value significantly and positively predicted online learning engagement, respectively; (2) negative-high arousal and negative-low arousal academic emotions significantly and negatively predicted online learning engagement; (3) training self-efficacy and training task value mediated the relationship between positive-high arousal academic emotions, negative-high arousal academic emotions, negative-low arousal academic emotions and online learning engagement, respectively.The study concluded that by creating an immersive learning environment based on the educational meta universe, personalized and precise training based on big data and adaptive technologies, and establishing a multi-dimensional and three-dimensional online learning support service system, which can effectively improve teachers' online learning engagement and enhance their online training quality and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助gqin采纳,获得10
1秒前
Bunny发布了新的文献求助10
3秒前
4秒前
小蘑菇应助内向连碧采纳,获得10
4秒前
dd99081完成签到 ,获得积分10
5秒前
丘比特应助gx采纳,获得10
6秒前
FashionBoy应助么大人采纳,获得10
7秒前
8秒前
FleeToMars完成签到 ,获得积分10
9秒前
林木木完成签到 ,获得积分10
9秒前
科研通AI2S应助yfyhjz采纳,获得10
11秒前
ZWZWXY完成签到,获得积分10
12秒前
13秒前
14秒前
Yve发布了新的文献求助10
14秒前
gx完成签到,获得积分10
15秒前
16秒前
yy发布了新的文献求助10
19秒前
dd99081发布了新的文献求助10
19秒前
wise111发布了新的文献求助10
20秒前
gx发布了新的文献求助10
20秒前
在水一方应助Ymir采纳,获得10
21秒前
半山完成签到,获得积分10
21秒前
25秒前
NexusExplorer应助樊书南采纳,获得100
28秒前
务实觅松完成签到 ,获得积分10
28秒前
情怀应助yy采纳,获得10
28秒前
Bunny完成签到 ,获得积分10
30秒前
32秒前
33秒前
36秒前
执着的玉米完成签到,获得积分10
36秒前
海贼学术完成签到 ,获得积分10
38秒前
38秒前
40秒前
42秒前
42秒前
aike完成签到,获得积分10
42秒前
wise111发布了新的文献求助30
46秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047311
求助须知:如何正确求助?哪些是违规求助? 3585151
关于积分的说明 11394472
捐赠科研通 3312485
什么是DOI,文献DOI怎么找? 1822608
邀请新用户注册赠送积分活动 894536
科研通“疑难数据库(出版商)”最低求助积分说明 816351