亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of prognosis in acute ischemic stroke after mechanical thrombectomy based on multimodal MRI radiomics and deep learning

无线电技术 医学 冲程(发动机) 缺血性中风 急性中风 深度学习 心脏病学 内科学 人工智能 放射科 计算机科学 缺血 工程类 组织纤溶酶原激活剂 机械工程
作者
Lei Pei,Xiaowei Han,Chenfeng Ni,Junli Ke
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:16: 1587347-1587347 被引量:1
标识
DOI:10.3389/fneur.2025.1587347
摘要

Background Acute ischemic stroke (AIS) is a major global health threat associated with high rates of disability and mortality, highlighting the need for early prognostic assessment to guide treatment. Currently, there are no reliable methods for the early prediction of poor prognosis in AIS, especially after mechanical thrombectomy. This study aimed to explore the value of radiomics and deep learning based on multimodal magnetic resonance imaging (MRI) in predicting poor prognosis in patients with AIS who underwent mechanical thrombectomy. This study aimed to provide a more accurate and comprehensive tool for stroke prognosis. Methods This study retrospectively analyzed the clinical data and multimodal MRI images of patients with stroke at admission. Logistic regression was employed to identify the risk factors associated with poor prognosis and to construct a clinical model. Radiomics features of the stroke-affected regions were extracted from the patients’ baseline multimodal MRI images, and the optimal radiomics features were selected using a least absolute shrinkage and selection operator regression model combined with five-fold cross-validation. The radiomics score was calculated based on the feature weights, and machine learning techniques were applied using a logistic regression classifier to develop the radiomics model. In addition, a deep learning model was devised using ResNet101 and transfer learning. The clinical, radiomics, and deep learning models were integrated to establish a comprehensive multifactorial logistic regression model, termed the CRD (Clinic-Radiomics-Deep Learning) model. The performance of each model in predicting poor prognosis was assessed using receiver operating characteristic (ROC) curve analysis, with the optimal model visualized as a nomogram. A calibration curve was plotted to evaluate the accuracy of nomogram predictions. Results A total of 222 patients with AIS were enrolled in this study in a 7:3 ratio, with 155 patients in the training cohort and 67 in the validation cohort. Statistical analysis of clinical data from the training and validation cohorts identified two independent risk factors for poor prognosis: the National Institutes of Health Stroke Scale score at admission and the occurrence of intracerebral hemorrhage. Of the 1,197 radiomic features, 16 were selected to develop the radiomics model. Area under the ROC curve (AUC) analysis of specific indicators demonstrated varying performances across methods and cohorts. In the training cohort, the clinical, radiomics, deep learning, and integrated CRD models achieved AUC values of 0.762, 0.755, 0.689, and 0.834, respectively. In the validation cohort, the clinical model exhibited an AUC of 0.874, the radiomics model achieved an AUC of 0.805, the deep learning model attained an AUC of 0.757, and the CRD model outperformed all models, with an AUC of 0.908. Calibration curves indicated that the CRD model showed exceptional consistency and accuracy in predicting poor prognosis in patients with AIS. Decision curve analysis revealed that the CRD model offered the highest net benefit compared with the clinical, radiomics, and deep learning models. Conclusion The CRD model based on multimodal MRI demonstrated high diagnostic efficacy and reliability in predicting poor prognosis in patients with AIS who underwent mechanical thrombectomy. This model holds considerable potential for assisting clinicians with risk assessment and decision-making for patients experiencing ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天啃文献完成签到 ,获得积分20
2秒前
rose完成签到,获得积分10
12秒前
Criminology34应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
18秒前
26秒前
lucky完成签到 ,获得积分10
38秒前
45秒前
飘逸的雁露完成签到,获得积分10
46秒前
52秒前
55秒前
57秒前
matrixu完成签到,获得积分10
1分钟前
lin发布了新的文献求助10
1分钟前
虞不斜完成签到 ,获得积分10
1分钟前
高亦凡完成签到 ,获得积分10
1分钟前
yk完成签到 ,获得积分20
1分钟前
斯文败类应助Ribes采纳,获得10
1分钟前
今后应助zkx采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助bare采纳,获得10
1分钟前
zkx发布了新的文献求助10
1分钟前
东山道友完成签到 ,获得积分10
1分钟前
小丑鱼儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
大力依白完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Ribes发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
知知完成签到,获得积分10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454799
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284869
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988