Learning Brain Connectivity Sub-networks by Group- Constrained Sparse Inverse Covariance Estimation for Alzheimer's Disease Classification

模式识别(心理学) 协方差 计算机科学 人工智能 成对比较 分类器(UML) 机器学习 数学 统计
作者
Yang Li,Jingyu Liu,Jie Huang,Zuoyong Li,Peipeng Liang
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media]
卷期号:12 被引量:13
标识
DOI:10.3389/fninf.2018.00058
摘要

Background/Aims: Brain functional connectivity networks constructed from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used for classifying Alzheimer's disease (AD) from normal controls (NC). However, conventional correlation analysis methods only capture the pairwise information, which may not be capable of revealing an adequate and accurate functional connectivity relationship among brain regions in the whole brain. Additionally, the non-sparse connectivity networks commonly contain a large number of spurious or insignificant connections, which are inconsistent with the sparse connectivity of actual brain networks in nature and may deteriorate the classification performance of Alzheimer's disease. Methods: To address these problems, in this paper, a new classification framework is proposed by combining the Group-constrained topology structure detection with sparse inverse covariance estimation (SICE) method to build the functional brain sub-network for each brain region. Particularly, to tune the sensitive analysis of the regularized parameters in the SICE method, a nested leave-one-out cross-validation (LOOCV) method is adopted. Sparse functional connectivity networks are thus effectively constructed by using the optimal regularized parameters. Finally, a decision classification tree (DCT) classifier is trained for classifying AD from NC based on these optimal functional brain sub-networks. The convergence performance of our proposed method is furthermore evaluated by the trend of coefficient variation. Results: Experiment results indicate that a LOOCV classification accuracy of 81.82% with a sensitivity of 80.00%, and a specificity of 83.33% can be obtained by using the proposed method for the classification AD from NC, and outperforms the most state-of-the-art methods in terms of the classification accuracy. Additionally, the experiment results of the convergence performance further suggest that our proposed scheme has a high rate of convergence. Particularly, the abnormal brain regions and functional connections identified by our proposed framework are highly associated with the underpinning pathological mechanism of the AD, which are consistent with previous studies. Conclusion: These results have demonstrated the effectiveness of the proposed Group- constrained SICE method, and are capable of clinical value to the diagnosis of Alzheimer's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xsf完成签到,获得积分10
刚刚
1秒前
GJH完成签到,获得积分10
2秒前
GJH发布了新的文献求助10
4秒前
7秒前
7秒前
精明的绿凝关注了科研通微信公众号
7秒前
11秒前
Orange应助小西米采纳,获得10
14秒前
黑大帅完成签到,获得积分10
14秒前
15秒前
Wudifairy完成签到,获得积分10
19秒前
彼其于岸完成签到 ,获得积分10
20秒前
halo完成签到,获得积分10
21秒前
泥嚎完成签到 ,获得积分10
24秒前
养花低手完成签到,获得积分10
25秒前
科研通AI5应助岳飞与张飞采纳,获得30
26秒前
28秒前
29秒前
llchen完成签到,获得积分0
30秒前
大模型应助聋哑时代采纳,获得10
31秒前
32秒前
YH发布了新的文献求助10
33秒前
yys完成签到,获得积分10
33秒前
Ava应助科研通管家采纳,获得10
35秒前
华仔应助科研通管家采纳,获得10
35秒前
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
脑洞疼应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
wishes完成签到 ,获得积分10
36秒前
无辜秋珊发布了新的文献求助10
36秒前
汤圆完成签到,获得积分10
37秒前
伍六柒完成签到,获得积分10
37秒前
TT发布了新的文献求助10
38秒前
英姑应助YH采纳,获得10
38秒前
sibo完成签到,获得积分10
41秒前
温文尔雅完成签到,获得积分10
41秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843771
求助须知:如何正确求助?哪些是违规求助? 3386164
关于积分的说明 10543971
捐赠科研通 3106867
什么是DOI,文献DOI怎么找? 1711226
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774409