Enhancing quality assurance through strategic artificial intelligence integration: a framework for higher education digital transformation

作者
Scott Warren,Elizabeth Vogt,Brent Edward Tincher,Junhe Yang
出处
期刊:Quality Assurance in Education [Emerald Publishing Limited]
标识
DOI:10.1108/qae-09-2024-0183
摘要

Purpose This paper aims to present a comprehensive quality assurance framework for higher education institutions integrating artificial intelligence (AI). Rooted in digital transformation theory, this exploration examines how generative AI can enhance quality assurance and address implementation challenges. The study uses systematic content analysis to identify evidence-based methods for leveraging AI to improve institutional effectiveness and educational quality. Design/methodology/approach This research addresses a gap in quality assurance frameworks for integrating AI in higher education. Existing literature often focuses on AI risks but neglects systematic approaches for enhancing quality assurance through the use of AI. This study offers leaders practical frameworks for leveraging AI to enhance quality assurance and educational integrity. Findings Strategic AI integration significantly boosts quality assurance through automated data analysis, pattern detection and predictive analytics. AI has the potential to strengthen analytics, enable proactive quality management and automate evidence collection. Successful implementation requires risk management, stakeholder-centric policy development and training. Research limitations/implications Higher education institutions can use this framework to develop AI-enhanced quality assurance systems, significantly improving the efficiency, accuracy and scope of institutional evaluations. The implementation model offers actionable guidance for strategic AI adoption while maintaining educational quality and institutional integrity. This framework helps institutions transition to proactive, data-driven quality management systems. Originality/value This study presents the first comprehensive framework specifically designed to enhance quality assurance through the integration of AI in higher education. It addresses quality improvement opportunities and risk management, offering institutional leaders a balanced methodology for AI-enhanced quality assurance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄科研完成签到,获得积分10
1秒前
笨笨绿柳完成签到 ,获得积分20
1秒前
1秒前
Leonard完成签到,获得积分10
1秒前
LiuShenglan发布了新的文献求助10
1秒前
秀丽友灵完成签到,获得积分10
2秒前
2秒前
优美巨人发布了新的文献求助10
2秒前
枔火发布了新的文献求助10
3秒前
3秒前
5秒前
speedness完成签到,获得积分10
5秒前
DMMM发布了新的文献求助10
7秒前
钟梓袄发布了新的文献求助10
8秒前
开开完成签到,获得积分20
8秒前
potato_bel完成签到,获得积分10
9秒前
cornerstone_发布了新的文献求助10
9秒前
10秒前
吕思温完成签到,获得积分10
11秒前
nn发布了新的文献求助10
12秒前
巴哒发布了新的文献求助10
12秒前
Lucas应助开开采纳,获得10
12秒前
小王梓发布了新的文献求助30
13秒前
Precious发布了新的文献求助20
13秒前
帅气鹭洋完成签到,获得积分10
14秒前
15秒前
15秒前
田様应助霸气雯采纳,获得10
15秒前
Damon完成签到,获得积分10
16秒前
五小完成签到 ,获得积分10
17秒前
高大厉发布了新的文献求助10
20秒前
XY发布了新的文献求助10
20秒前
西瓜藤子发布了新的文献求助10
20秒前
20秒前
晚风发布了新的文献求助30
20秒前
BOBO发布了新的文献求助80
22秒前
Koalas应助科研通管家采纳,获得20
24秒前
xxfsx应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207759
求助须知:如何正确求助?哪些是违规求助? 4385596
关于积分的说明 13657629
捐赠科研通 4244284
什么是DOI,文献DOI怎么找? 2328727
邀请新用户注册赠送积分活动 1326487
关于科研通互助平台的介绍 1278577