DRL‐Based Computation‐Efficient Offloading and Power Control for UAV‐Assisted MEC Networks

计算机科学 计算机网络
作者
Bhanu Priya,J. Nandhini,Uma S V,K. Anuratha
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:35 (12)
标识
DOI:10.1002/ett.70027
摘要

ABSTRACT Mobile edge computing (MEC) has achieved significant attention due to the availability of computational tasks in specific scenarios such as emergency applications like forest fire and earthquake remedies. The computationally demanding policy and user offloading policy are challenging problems to address in the energy constrained unmanned aerial vehicle (UAV) network. In this work, the computational task offloading, and power management is solved by using the multi‐agent deterministic power management algorithm (MADPM) based on deep reinforcement learning. Every UAV works together as a team to understand the actor critic environment and to make decisions that will help achieve the goals. This involves transferring computational tasks from UAVs to more powerful ground stations or other UAVs to save energy and enhance performance. It requires intelligent decision‐making to determine which tasks to offload and when. The joint optimization problem is verified with the simulation results and the proposed work is enabled with MEC in achieving the emergence of UAV related applications. Our simulations show that the MADPM algorithm, as suggested, enhances task offloading efficiency by 35% and reduces power consumption by 25% when compared with current methods. These findings underscore the ability of our method to greatly improve the UAV operational capacities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仇湘完成签到,获得积分10
刚刚
1秒前
芒果完成签到,获得积分10
2秒前
李健应助开朗的寻桃采纳,获得10
2秒前
七叶完成签到,获得积分10
3秒前
Almo完成签到,获得积分10
3秒前
3秒前
大大彬发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
YCG发布了新的文献求助10
6秒前
甜心糖完成签到 ,获得积分10
6秒前
鱼鱼发布了新的文献求助10
7秒前
LEOKIM发布了新的文献求助10
7秒前
飞太难发布了新的文献求助10
7秒前
8秒前
quanbin发布了新的文献求助10
8秒前
王小丫完成签到 ,获得积分10
8秒前
9秒前
Sunday完成签到,获得积分10
9秒前
哭泣的映寒完成签到 ,获得积分10
10秒前
10秒前
10秒前
cc完成签到,获得积分10
10秒前
全名发布了新的文献求助10
10秒前
10秒前
11秒前
Ava应助扶苏采纳,获得10
11秒前
11秒前
曾哥帅完成签到,获得积分10
12秒前
LLLnna完成签到,获得积分10
12秒前
12秒前
云端漫步完成签到,获得积分10
12秒前
tricker发布了新的文献求助10
12秒前
Tao完成签到,获得积分10
12秒前
帅气的藏鸟完成签到,获得积分10
12秒前
真实的电脑完成签到,获得积分10
12秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820576
求助须知:如何正确求助?哪些是违规求助? 3363504
关于积分的说明 10422977
捐赠科研通 3081912
什么是DOI,文献DOI怎么找? 1695276
邀请新用户注册赠送积分活动 815042
科研通“疑难数据库(出版商)”最低求助积分说明 768819