医学
列线图
颈动脉
颈动脉疾病
无线电技术
放射科
冠状动脉疾病
血管内超声
超声波
疾病
内科学
心脏病学
颈动脉内膜切除术
作者
Xiaoting Wang,Peng Luo,Huaan Du,Shiyu Li,Yi Wang,Xun Guo,Li Wan,Binyi Zhao,Jianli Ren
出处
期刊:Diagnostics
[MDPI AG]
日期:2022-01-20
卷期号:12 (2): 256-256
被引量:9
标识
DOI:10.3390/diagnostics12020256
摘要
This study aimed to explore the feasibility of ultrasound radiomics analysis before invasive coronary angiography (ICA) for evaluating the severity of coronary artery disease (CAD) quantified by the SYNTAX score (SS). This study included 105 carotid plaques from 105 patients (64 low-SS patients, 41 intermediate-high-SS patients). The clinical characteristics and three-dimensional ultrasound (3D-US) features before ICA were assessed. Ultrasound images of carotid plaques were used for radiomics analysis. Least absolute shrinkage and selection operator (LASSO) regression, which generated several nonzero coefficients, was used to select features that could predict intermediate-high SS. Based on those coefficients, the radiomics score (Rad-score) was calculated. The selected clinical characteristics, 3D-US features, and Rad-score were finally integrated into a radiomics nomogram. Among the clinical characteristics and 3D-US features, high-density lipoprotein (HDL), apolipoprotein B (Apo B), and plaque volume were identified as predictors for distinguishing between low SS and intermediate-high SS. During the radiomics process, 8 optimal radiomics features most capable of identifying intermediate-high SS were selected from 851 candidate radiomics features. The differences in Rad-score between the training and the validation set were significant (p = 0.016 and 0.006). The radiomics nomogram integrating HDL, Apo B, plaque volume, and Rad-score showed excellent results in the training set (AUC, 0.741 (95% confidence interval (CI): 0.646–0.835)) and validation set (AUC, 0.939 (95% CI: 0.860–1.000)), with good calibration (mean absolute errors of 0.028 and 0.059 in training and validation sets, respectively). Decision curve analysis showed that the radiomics nomogram could identify patients who could obtain the most benefit. We concluded that the radiomics nomogram based on carotid plaque ultrasound has favorable value for the noninvasive prediction of intermediate-high SS. This radiomics nomogram has potential value for the risk stratification of CAD before ICA and provides clinicians with a noninvasive diagnostic tool.
科研通智能强力驱动
Strongly Powered by AbleSci AI