Remote Sensing Image Change Detection Based on Deep Multi-Scale Multi-Attention Siamese Transformer Network

计算机科学 人工智能 深度学习 保险丝(电气) 特征提取 模式识别(心理学) 变更检测 特征(语言学) 计算机视觉 工程类 语言学 电气工程 哲学
作者
Mengxuan Zhang,Zhao Liu,Jie Feng,Long Liu,Licheng Jiao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 842-842 被引量:35
标识
DOI:10.3390/rs15030842
摘要

Change detection is a technique that can observe changes in the surface of the earth dynamically. It is one of the most significant tasks in remote sensing image processing. In the past few years, with the ability of extracting rich deep image features, the deep learning techniques have gained popularity in the field of change detection. In order to obtain obvious image change information, the attention mechanism is added in the decoder and output stage in many deep learning-based methods. Many of these approaches neglect to upgrade the ability of the encoders and the feature extractors to extract the representational features. To resolve this problem, this study proposes a deep multi-scale multi-attention siamese transformer network. A special contextual attention module combining a convolution and self-attention module is introduced into the siamese feature extractor to enhance the global representation ability. A lightly efficient channel attention block is added in the siamese feature extractor to obtain the information interaction among different channels. Furthermore, a multi-scale feature fusion module is proposed to fuse the features from different stages of the siamese feature extractor, and it can detect objects of different sizes and irregularities. To increase the accuracy of the proposed approach, the transformer module is utilized to model the long-range context in two-phase images. The experimental results on the LEVIR-CD and the CCD datasets show the effectiveness of the proposed network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rain1god完成签到,获得积分10
刚刚
宋艳芳发布了新的文献求助10
刚刚
几星霜发布了新的文献求助10
刚刚
一二完成签到,获得积分10
刚刚
刚刚
Ariaxin发布了新的文献求助30
1秒前
2秒前
Gaolongzhen完成签到 ,获得积分10
3秒前
ZYY驳回了chenyh应助
3秒前
我是老大应助笨笨采纳,获得10
4秒前
yating完成签到,获得积分10
5秒前
米糊发布了新的文献求助10
6秒前
luokm发布了新的文献求助10
6秒前
6秒前
怕黑的觅海完成签到,获得积分10
8秒前
8秒前
zhangmeng99发布了新的文献求助10
9秒前
华仔应助冷傲蛋挞采纳,获得10
9秒前
9秒前
单纯夏烟完成签到,获得积分10
9秒前
慕青应助1111采纳,获得10
10秒前
哈哈哈来打我呀完成签到,获得积分10
10秒前
10秒前
Ariaxin完成签到,获得积分10
11秒前
受伤白昼完成签到,获得积分10
11秒前
12秒前
追寻冰巧完成签到 ,获得积分10
12秒前
Lucas应助daypoi采纳,获得10
13秒前
差一点完成签到,获得积分20
13秒前
一株多肉发布了新的文献求助10
13秒前
卓若之完成签到 ,获得积分10
14秒前
共享精神应助威武好吐司采纳,获得10
14秒前
14秒前
15秒前
15秒前
踏实绮露完成签到 ,获得积分10
16秒前
突突突应助单纯夏烟采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
szh123完成签到 ,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536205
求助须知:如何正确求助?哪些是违规求助? 4623940
关于积分的说明 14590018
捐赠科研通 4564400
什么是DOI,文献DOI怎么找? 2501719
邀请新用户注册赠送积分活动 1480512
关于科研通互助平台的介绍 1451794