Comprehensive assessment of refined greenhouse gas emissions from China's livestock sector

温室气体 环境科学 中国 牲畜 环境工程 环境保护 废物管理 地理 工程类 林业 地质学 考古 海洋学
作者
Yun Huang,Liang Han,Zhijian Wu,Zeyang Xie,Zhong Liu,Jinqi Zhu,Bofu Zheng,Wei Wan
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:946: 174301-174301 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.174301
摘要

Livestock and poultry products are an essential human food source. However, the rapid development of the livestock sector (LS) has caused it to become a significant source of greenhouse gas (GHG) emissions. Consequently, investigating the spatio-temporal characteristics and evolution of GHG emissions is crucial to facilitate the green development of the LS and achieve "peak carbon and carbon neutrality". This study combined life cycle assessment (LCA) with the IPCC Tier II method to construct a novel GHG emissions inventory. The GHG emissions of 31 provinces in China from 2000 to 2021 were calculated, and their spatio-temporal characteristics were revealed. Then, the stochastic impacts by regression on population, affluence, and technology (STIRPAT) model was used to identify the main driving factors of GHG emissions in six regions of China and explore the emission reduction potential. The results showed that GHG emissions increased and then decreased from 2000 to 2021, following a gradual and steady trend. The peak of 628.55 Mt CO2-eq was reached in 2006. The main GHG-producing segments were enteric fermentation, slaughtering and processing, and manure management, accounting for 45.39 %, 26.34 %, and 23.08 % of total GHG emissions, respectively. Overall, the center of gravity of GHG emissions in China migrated northward, with spatial aggregation observed since 2016. The high emission intensity regions were mainly located west of the "Hu Huanyong line". Economic efficiency and emissions intensity were the main drivers of GHG emissions. Under the baseline scenario, GHG emissions are not projected to peak until 2050. Therefore, urgent action is needed to promote the low-carbon green development of the LS in China. The results can serve as scientific references for the macro-prevention and control of GHG emissions, aiding strategic decision-making. Additionally, they can provide new ideas for GHG accounting in China and other countries around the world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Mansis采纳,获得10
刚刚
zz关注了科研通微信公众号
刚刚
刚刚
zzz发布了新的文献求助10
1秒前
不会失忆完成签到,获得积分10
2秒前
飞翔的帅猪完成签到,获得积分10
2秒前
简单的梦槐完成签到 ,获得积分10
2秒前
水菜泽子完成签到,获得积分10
3秒前
火星上玫瑰完成签到,获得积分10
3秒前
科研通AI2S应助杨叔叔采纳,获得10
4秒前
4秒前
天水碧发布了新的文献求助10
5秒前
6秒前
6秒前
惜曦完成签到 ,获得积分10
8秒前
CodeCraft应助Roger采纳,获得10
8秒前
9秒前
9秒前
共享精神应助咿咿呀呀采纳,获得10
10秒前
11秒前
科研通AI5应助Chaochao采纳,获得10
11秒前
宿舍发布了新的文献求助10
13秒前
zz发布了新的文献求助10
13秒前
Mansis发布了新的文献求助10
14秒前
魔幻若血发布了新的文献求助10
15秒前
虎皮青椒发布了新的文献求助10
15秒前
tradimed发布了新的文献求助10
15秒前
不会学术的羊完成签到,获得积分10
16秒前
zzz完成签到,获得积分10
17秒前
22秒前
24秒前
25秒前
lucky应助曲老师采纳,获得10
26秒前
咿咿呀呀发布了新的文献求助10
27秒前
29秒前
科研路上的干饭桶完成签到,获得积分10
29秒前
gyj发布了新的文献求助10
29秒前
29秒前
阿文文文完成签到,获得积分10
30秒前
ZoeyD完成签到 ,获得积分10
36秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472