Automatic Detection of B-Lines in Lung Ultrasound Based on the Evaluation of Multiple Characteristic Parameters Using Raw RF Data

人工智能 模式识别(心理学) 计算机科学 支持向量机 判别式 基本事实 主成分分析
作者
Wenkai Shen,Yuancheng Zhang,Haoyu Zhang,Hui Zhong,Mingxi Wan
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:47 (3-4): 134-152
标识
DOI:10.1177/01617346251330111
摘要

B-line artifacts in lung ultrasound, pivotal for diagnosing pulmonary conditions, warrant automated recognition to enhance diagnostic accuracy. In this paper, a lung ultrasound B-line vertical artifact identification method based on radio frequency (RF) signal was proposed. B-line regions were distinguished from non-B-line regions by inputting multiple characteristic parameters into nonlinear support vector machine (SVM). Six characteristic parameters were evaluated, including permutation entropy, information entropy, kurtosis, skewness, Nakagami shape factor, and approximate entropy. Following the evaluation that demonstrated the performance differences in parameter recognition, Principal Component Analysis (PCA) was utilized to reduce the dimensionality to a four-dimensional feature set for input into a nonlinear Support Vector Machine (SVM) for classification purposes. Four types of experiments were conducted: a sponge with dripping water model, gelatin phantoms containing either glass beads or gelatin droplets, and in vivo experiments. By employing precise feature selection and analyzing scan lines rather than full images, this approach significantly reduced the dependency on large image datasets without compromising discriminative accuracy. The method exhibited performance comparable to contemporary image-based deep learning approaches, which, while highly effective, typically necessitate extensive data for training and require expert annotation of large datasets to establish ground truth. Owing to the optimized architecture of our model, efficient sample recognition was achieved, with the capability to process between 27,000 and 33,000 scan lines per second (resulting in a frame rate exceeding 100 FPS, with 256 scan lines per frame), thus supporting real-time analysis. The results demonstrate that the accuracy of the method to classify a scan line as belonging to a B-line region was up to 88%, with sensitivity reaching up to 90%, specificity up to 87%, and an F1-score up to 89%. This approach effectively reflects the performance of scan line classification pertinent to B-line identification. Our approach reduces the reliance on large annotated datasets, thereby streamlining the preprocessing phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
刚刚
qyp发布了新的文献求助10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得30
1秒前
ding应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
linyi应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
zzz发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
情怀应助yqsf789采纳,获得10
4秒前
Felixsun发布了新的文献求助10
4秒前
4秒前
成就的面包完成签到,获得积分10
4秒前
muzi发布了新的文献求助10
5秒前
传奇3应助Sui采纳,获得10
5秒前
慕青应助Red采纳,获得10
6秒前
6秒前
小猫多鱼完成签到,获得积分10
7秒前
7秒前
小哈完成签到,获得积分10
8秒前
8秒前
zhscu完成签到,获得积分10
8秒前
yujiaxin发布了新的文献求助10
8秒前
9秒前
Ava应助木木采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113