Automatic Detection of B-Lines in Lung Ultrasound Based on the Evaluation of Multiple Characteristic Parameters Using Raw RF Data

人工智能 模式识别(心理学) 计算机科学 支持向量机 判别式 基本事实 主成分分析
作者
Wenkai Shen,Yuancheng Zhang,Haoyu Zhang,Hui Zhong,Mingxi Wan
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:47 (3-4): 134-152
标识
DOI:10.1177/01617346251330111
摘要

B-line artifacts in lung ultrasound, pivotal for diagnosing pulmonary conditions, warrant automated recognition to enhance diagnostic accuracy. In this paper, a lung ultrasound B-line vertical artifact identification method based on radio frequency (RF) signal was proposed. B-line regions were distinguished from non-B-line regions by inputting multiple characteristic parameters into nonlinear support vector machine (SVM). Six characteristic parameters were evaluated, including permutation entropy, information entropy, kurtosis, skewness, Nakagami shape factor, and approximate entropy. Following the evaluation that demonstrated the performance differences in parameter recognition, Principal Component Analysis (PCA) was utilized to reduce the dimensionality to a four-dimensional feature set for input into a nonlinear Support Vector Machine (SVM) for classification purposes. Four types of experiments were conducted: a sponge with dripping water model, gelatin phantoms containing either glass beads or gelatin droplets, and in vivo experiments. By employing precise feature selection and analyzing scan lines rather than full images, this approach significantly reduced the dependency on large image datasets without compromising discriminative accuracy. The method exhibited performance comparable to contemporary image-based deep learning approaches, which, while highly effective, typically necessitate extensive data for training and require expert annotation of large datasets to establish ground truth. Owing to the optimized architecture of our model, efficient sample recognition was achieved, with the capability to process between 27,000 and 33,000 scan lines per second (resulting in a frame rate exceeding 100 FPS, with 256 scan lines per frame), thus supporting real-time analysis. The results demonstrate that the accuracy of the method to classify a scan line as belonging to a B-line region was up to 88%, with sensitivity reaching up to 90%, specificity up to 87%, and an F1-score up to 89%. This approach effectively reflects the performance of scan line classification pertinent to B-line identification. Our approach reduces the reliance on large annotated datasets, thereby streamlining the preprocessing phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分20
刚刚
Akim应助阿正嗖啪采纳,获得10
刚刚
刚刚
科研通AI6应助CHEN采纳,获得10
刚刚
NexusExplorer应助黎L采纳,获得10
刚刚
乐乐应助zttr1采纳,获得10
1秒前
fansaiwang完成签到,获得积分10
1秒前
洪东智完成签到,获得积分10
1秒前
Hello应助路绪震采纳,获得10
2秒前
2秒前
2秒前
3秒前
小白完成签到,获得积分10
3秒前
狂野雨兰发布了新的文献求助10
4秒前
hh发布了新的文献求助10
4秒前
CarryLJR完成签到,获得积分10
6秒前
Dean应助Michael采纳,获得110
6秒前
Sunday发布了新的文献求助10
6秒前
8秒前
9秒前
Owen应助小可采纳,获得10
10秒前
鳗鱼芷巧发布了新的文献求助10
10秒前
占易形完成签到,获得积分10
12秒前
嘟嘟嘟嘟完成签到 ,获得积分10
12秒前
李健的小迷弟应助lmc采纳,获得10
12秒前
wffff完成签到,获得积分10
13秒前
13秒前
13秒前
薛璞发布了新的文献求助10
13秒前
大个应助kai采纳,获得10
14秒前
乐乐应助sssssnape采纳,获得10
14秒前
cheng发布了新的文献求助10
14秒前
李健的小迷弟应助CarryLJR采纳,获得10
14秒前
15秒前
TN完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
cc发布了新的文献求助10
17秒前
所所应助合适傲白采纳,获得10
17秒前
徒然草发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355