Super‐resolution reconstruction of MR vessel wall images using a deep neural network

作者
Wenjing Xu,Xuetong Tao,Sen Jia,Greta S. P. Mok,Ke Zhang,Jing Qin,Ye Li,Xin Liu,Zhanli Hu,Dong Liang,Hairong Zheng,Na Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:52 (12)
标识
DOI:10.1002/mp.70157
摘要

Abstract Background Magnetic resonance vessel wall imaging (MR‐VWI) is a non‐invasive, high‐resolution technique that enables detailed visualization of vascular structures and plays a crucial role in diagnosing cerebrovascular diseases. However, imaging intracranial perforating arteries requires exceptionally high spatial resolution. Conventional super‐resolution techniques primarily focus on real‐valued reconstructions, neglecting the inherently complex‐valued nature of MR data and failing to fully exploit phase information. Since MR images are inherently acquired in complex form, relying solely on magnitude data discards valuable phase components essential for comprehensive vascular assessment. Purpose To develop and evaluate a deep‐learning‐based framework capable of generating high‐resolution MR vessel wall images from low‐resolution acquisitions by modeling the complex‐valued nature of MR data. Methods A three‐dimensional complex‐valued super‐resolution (CVSR) neural network was designed to reconstruct high‐resolution images while preserving both magnitude and phase information within the complex domain. The CVSR model was trained on 200 data sets and tested on 50 pairs. Three super‐resolution approaches, including Fourier interpolation, an enhanced deep super‐resolution (EDSR) network with two real‐valued input channels (EDSR‐2Ch), and the proposed CVSR, were compared against ground‐truth images at 0.44 mm 3 isotropic resolution using structural similarity (SSIM), peak signal‐to‐noise ratio (PSNR), and root‐mean‐square error (RMSE). Results The proposed CVSR achieved superior quantitative performance and visual fidelity compared with competing methods. It reconstructed vessel wall images with improved clarity, continuity, and closer resemblance to the ground truth. On the 50‐subject test set, CVSR achieved higher SSIM (0.771 vs. 0.759 and 0.628), PSNR gains of 0.35 and 2.58 dB, and RMSE reductions of 3.97% and 25.77% compared with EDSR‐2Ch and Fourier interpolation, respectively. Conclusions The proposed CVSR framework effectively transforms low‐resolution MR vessel‐wall images into high‐resolution reconstructions, enhancing detail visualization and delineation of fine vascular details. This approach has the potential to improve the clinical assessment of cerebrovascular pathology, particularly arterial wall and plaque characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助路飞采纳,获得10
1秒前
施世宏发布了新的文献求助10
1秒前
2秒前
哈哈哈发布了新的文献求助20
2秒前
2秒前
2秒前
lejunia发布了新的文献求助10
3秒前
Akim应助limz采纳,获得10
3秒前
王了了完成签到 ,获得积分10
4秒前
yar完成签到 ,获得积分10
5秒前
lian完成签到,获得积分10
5秒前
yang完成签到,获得积分10
5秒前
6秒前
6秒前
强砸完成签到,获得积分10
6秒前
sfy66666完成签到,获得积分20
7秒前
8秒前
lian发布了新的文献求助10
8秒前
田様应助典雅的盼山采纳,获得10
9秒前
LHT完成签到,获得积分10
10秒前
司空晋鹏完成签到,获得积分10
10秒前
大个应助好好好采纳,获得10
11秒前
路飞完成签到,获得积分10
11秒前
雪白煜城发布了新的文献求助10
11秒前
11秒前
12秒前
LJP发布了新的文献求助10
12秒前
lseven完成签到,获得积分10
12秒前
桐桐应助冷酷的依霜采纳,获得10
13秒前
雨落瑾年完成签到,获得积分0
14秒前
Lucas应助施世宏采纳,获得10
14秒前
烟花应助科研狗的春天采纳,获得10
14秒前
那时花开应助wzz采纳,获得10
14秒前
路飞发布了新的文献求助10
15秒前
河丫完成签到,获得积分10
15秒前
lingo发布了新的文献求助10
16秒前
王燕峰发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080