Model to predict motion sickness within autonomous vehicles

运动病 运动(物理) 任务(项目管理) 计算机科学 人工智能 计算机视觉 模拟 运动捕捉 工程类 心理学 系统工程 精神科
作者
Spencer Salter,Cyriel Diels,Paul Herriotts,Stratis Kanarachos,Doug Thake
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:234 (5): 1330-1345 被引量:17
标识
DOI:10.1177/0954407019879785
摘要

Background: Motion sickness is common within most forms of transport; it affects most of the population who experience varied symptoms at some stage in their lives. Thus far, there has been no specific method to quantify the predicted levels of motion sickness for a given vehicle design, task and route. Objective: To develop a motion sickness virtual prediction tool that includes the following inputs: human motion, vision, vehicle motion, occupant task and vehicle design. Method: A time domain analysis using a multi-body systems approach has been developed to provide the raw data for post-processing of vehicle motion, occupant motion and vision, based on a virtual route designed to provoke motion sickness, while the digital occupant undertakes a specific non-driving related task. Results: Predicted motion sickness levels are shared for a simple positional sweep of a vehicle cabin due to a prescribed motion and task. Two additional examples are shared within this study; first, it was found that the model can predict the difference found between sitting forwards and backwards in an autonomous vehicle. Second, analysis of a respected and independent study into auxiliary display height shows that the model can predict both relative and absolute levels between the two display heights congruent to the original physical experiment. Conclusion: It has been shown that the tool has been successful in predicting motion sickness in autonomous vehicles and is therefore of great use in guiding new future mobility solutions in the ability to tune vehicle dynamics and control alongside vision and design attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助称心寒松采纳,获得10
刚刚
1秒前
已知中的未知完成签到 ,获得积分10
1秒前
小魏小魏发布了新的文献求助10
1秒前
cy完成签到,获得积分10
2秒前
小马甲应助杨欣悦采纳,获得10
2秒前
4秒前
4秒前
5秒前
thuuu完成签到,获得积分10
5秒前
5秒前
51完成签到,获得积分10
6秒前
7秒前
tY完成签到,获得积分10
7秒前
7秒前
7秒前
酸汤肥牛发布了新的文献求助50
7秒前
FM012发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
xx发布了新的文献求助10
9秒前
Orange应助蜜CC采纳,获得10
10秒前
10秒前
称心寒松发布了新的文献求助10
11秒前
米线完成签到,获得积分10
11秒前
zhoulu发布了新的文献求助10
12秒前
坤坤蹦蹦跳跳完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
14秒前
14秒前
xx完成签到,获得积分10
15秒前
15秒前
15秒前
谢罗涛完成签到,获得积分10
15秒前
16秒前
安白发布了新的文献求助10
16秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Machine Learning in Chemistry The Impact of Artificial Intelligence 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899282
求助须知:如何正确求助?哪些是违规求助? 3444006
关于积分的说明 10832793
捐赠科研通 3168781
什么是DOI,文献DOI怎么找? 1750783
邀请新用户注册赠送积分活动 846319
科研通“疑难数据库(出版商)”最低求助积分说明 789113