A Rolling Recruitment Process Under Applicant Stochastic Departures

过程(计算) 业务 计算机科学 运营管理 经济 运筹学 工程类 操作系统
作者
Chenyin Gong,Qing Li
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2024.1456
摘要

Problem definition: We study a rolling recruitment process in which applicants leave the system stochastically. Applicants arrive randomly over time, and each applicant is available for a random amount of time after they arrive. In each period, the recruiter must decide whether to stop or to wait. If the recruiter stops, he or she needs to determine how many offers to make and whom to make offers to, and the applicants who do not receive an offer will leave the system. If the recruiter waits, more applicants will be available in the next period, whereas some who arrived earlier will leave. Methodology/results: We model the process as a large-scale optimal stopping problem and show how the applicant qualifications, measured by scores, affect the recruiter’s optimal policy. Managerial implications: We find that the optimal stopping rule for each applicant’s score is a two-threshold policy. If the score exceeds the higher threshold, then the recruiter stops and makes an offer to the applicant and possibly to others. If the score falls below the lower threshold, then the recruiter also stops but makes no offer to the applicant. If the score is in between the two thresholds, the recruiter waits. We further explore the impact on an applicant’s likelihood of receiving an offer if his or her competitors become more qualified. When the score of another applicant increases, the recruiter may change from making an offer to an applicant to waiting or to instead making an offer to the other applicant whose score has increased. In other words, an applicant may be disadvantaged if he or she faces stronger competitors, which is expected. However, an applicant may also benefit from having stronger competitors. When the score of another applicant increases, the recruiter may change from not making an offer to an applicant to making an offer to both applicants. Overall, we provide valuable insights into the role of applicant qualifications in stopping decisions, propose methods for computing the optimal policy, and quantify the benefits of endogenously determining the stopping rule. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.1456 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
瘦瘦代桃发布了新的文献求助10
刚刚
大芳儿发布了新的文献求助10
2秒前
3秒前
哎健身完成签到 ,获得积分10
3秒前
4秒前
健康的沂完成签到,获得积分10
4秒前
4秒前
6秒前
1111发布了新的文献求助10
7秒前
7秒前
骑猪看唱本完成签到,获得积分10
8秒前
小兔子乖乖完成签到 ,获得积分10
9秒前
CodeCraft应助坦率邪欢采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
科研通AI2S应助Tine采纳,获得10
12秒前
13秒前
康康发布了新的文献求助10
13秒前
小蘑菇应助健康的沂采纳,获得10
13秒前
药学完成签到 ,获得积分10
14秒前
大芳儿完成签到,获得积分10
14秒前
EVE发布了新的文献求助30
14秒前
15秒前
lqy完成签到 ,获得积分10
15秒前
15秒前
魏泽洪发布了新的文献求助30
15秒前
zz完成签到 ,获得积分10
16秒前
大个应助Hsu采纳,获得10
16秒前
小蘑菇应助hnlgdx采纳,获得10
18秒前
18秒前
CipherSage应助阿俊采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
qiuqiu发布了新的文献求助10
19秒前
Hello应助甜甜谷波采纳,获得10
23秒前
23秒前
xuanxuan发布了新的文献求助10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730704
求助须知:如何正确求助?哪些是违规求助? 5324871
关于积分的说明 15319570
捐赠科研通 4877061
什么是DOI,文献DOI怎么找? 2619989
邀请新用户注册赠送积分活动 1569293
关于科研通互助平台的介绍 1525835