Learning Attention in the Frequency Domain for Flexible Real Photograph Denoising

计算机科学 人工智能 频域 降噪 噪音(视频) 特征(语言学) 管道(软件) 深度学习 联营 模式识别(心理学) 机器学习 计算机视觉 图像(数学) 语言学 哲学 程序设计语言
作者
Ruijun Ma,Yaoxuan Zhang,Bob Zhang,Leyuan Fang,Dong Huang,Long Qi
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3707-3721 被引量:10
标识
DOI:10.1109/tip.2024.3404253
摘要

Recent advancements in deep learning techniques have pushed forward the frontiers of real photograph denoising. However, due to the inherent pooling operations in the spatial domain, current CNN-based denoisers are biased towards focusing on low-frequency representations, while discarding the high-frequency components. This will induce a problem for suboptimal visual quality as the image denoising tasks target completely eliminating the complex noises and recovering all fine-scale and salient information. In this work, we tackle this challenge from the frequency perspective and present a new solution pipeline, coined as frequency attention denoising network (FADNet). Our key idea is to build a learning-based frequency attention framework, where the feature correlations on a broader frequency spectrum can be fully characterized, thus enhancing the representational power of the network across multiple frequency channels. Based on this, we design a cascade of adaptive instance residual modules (AIRMs). In each AIRM, we first transform the spatial-domain features into the frequency space. Then, a learning-based frequency attention framework is devised to explore the feature inter-dependencies converted in the frequency domain. Besides this, we introduce an adaptive layer by leveraging the guidance of the estimated noise map and intermediate features to meet the challenges of model generalization in the noise discrepancy. The effectiveness of our method is demonstrated on several real camera benchmark datasets, with superior denoising performance, generalization capability, and efficiency versus the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
隐形曼青应助Diamond采纳,获得10
9秒前
9秒前
penzer给penzer的求助进行了留言
12秒前
yangmiemie发布了新的文献求助10
14秒前
wshwx发布了新的文献求助10
15秒前
文文文完成签到,获得积分10
19秒前
25秒前
七曜完成签到,获得积分20
35秒前
35秒前
Hello应助七曜采纳,获得10
39秒前
尊敬的夏槐完成签到,获得积分10
40秒前
Diamond发布了新的文献求助10
41秒前
优雅山柏完成签到,获得积分10
46秒前
48秒前
等待的夜香完成签到,获得积分10
48秒前
平常的毛豆应助七曜采纳,获得10
49秒前
顾矜应助Diamond采纳,获得10
49秒前
51秒前
chengmin发布了新的文献求助10
53秒前
6666666666完成签到 ,获得积分10
57秒前
安静的棉花糖完成签到 ,获得积分10
58秒前
59秒前
Diamond完成签到,获得积分10
1分钟前
1分钟前
lxr2发布了新的文献求助10
1分钟前
传奇3应助蓝桉采纳,获得10
1分钟前
1分钟前
1分钟前
penzer发布了新的文献求助10
1分钟前
华北走地鸡完成签到,获得积分10
1分钟前
1分钟前
SPUwangshunfeng完成签到,获得积分10
1分钟前
蒋时晏应助科研通管家采纳,获得30
1分钟前
蒋时晏应助科研通管家采纳,获得30
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
妮儿完成签到 ,获得积分10
1分钟前
大师现在发布了新的文献求助10
1分钟前
bubble完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776406
求助须知:如何正确求助?哪些是违规求助? 3321809
关于积分的说明 10207935
捐赠科研通 3037143
什么是DOI,文献DOI怎么找? 1666560
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872