化学空间
核糖核酸
核酸
计算生物学
小分子
分子
RNA结合蛋白
核酸结构
化学
计算机科学
生物
生物化学
药物发现
基因
有机化学
作者
Kamyar Yazdani,Deondre Jordan,Mo Yang,Christopher R. Fullenkamp,Timothy E. H. Allen,Rabia T. Khan,John S. Schneekloth
标识
DOI:10.1101/2022.08.01.502065
摘要
Abstract Small molecule targeting of RNA has emerged as a new frontier in medicinal chemistry, but compared to the protein targeting literature our understanding of chemical matter that binds to RNA is limited. In this study, we report R epository O f BI nders to N ucleic acids (ROBIN), a new library of nucleic acid binders identified by small molecule microarray (SMM) screening. The complete results of 36 individual nucleic acid SMM screens against a library of 24,572 small molecules are reported (including a total of 1,627,072 interactions assayed). A set of 2,003 RNA-binding small molecules is identified, representing the largest fully public, experimentally derived library of its kind to date. Machine learning is used to develop highly predictive and interpretable models to characterize RNA-binding molecules. This work demonstrates that machine learning algorithms applied to experimentally derived sets of RNA binders are a powerful method to inform RNA-targeted chemical space.
科研通智能强力驱动
Strongly Powered by AbleSci AI