Deep Semisupervised Multitask Learning Model and Its Interpretability for Survival Analysis

可解释性 机器学习 人工智能 计算机科学 协变量 深度学习 排名(信息检索) 生存分析 多任务学习 数据挖掘 统计 任务(项目管理) 数学 管理 经济
作者
Shengqiang Chi,Yu Tian,Feng Wang,Yu Wang,Ming Chen,Jingsong Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 3185-3196 被引量:18
标识
DOI:10.1109/jbhi.2021.3064696
摘要

Survival analysis is a commonly used method in the medical field to analyze and predict the time of events. In medicine, this approach plays a key role in determining the course of treatment, developing new drugs, and improving hospital procedures. Most of the existing work in this area has addressed the problem by making strong assumptions about the underlying stochastic process. However, these assumptions are usually violated in the real-world data. This paper proposed a semisupervised multitask learning (SSMTL) method based on deep learning for survival analysis with or without competing risks. SSMTL transforms the survival analysis problem into a multitask learning problem that includes semisupervised learning and multipoint survival probability prediction. The distribution of survival times and the relationship between covariates and outcomes were modeled directly without any assumptions. Semisupervised loss and ranking loss are used to deal with censored data and the prior knowledge of the nonincreasing trend of the survival probability. Additionally, the importance of prognostic factors is determined, and the time-dependent and nonlinear effects of these factors on survival outcomes are visualized. The prediction performance of SSMTL is better than that of previous models in settings with or without competing risks, and the effects of predictors are successfully described. This study is of great significance for the exploration and application of deep learning methods involving medical structured data and provides an effective deep-learning-based method for survival analysis with complex-structured clinical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LHTTT完成签到,获得积分10
刚刚
李爱国应助Hui采纳,获得10
刚刚
1秒前
活泼的晓露完成签到,获得积分10
2秒前
qunli发布了新的文献求助10
2秒前
慕青应助爱科研采纳,获得10
3秒前
默默完成签到 ,获得积分10
3秒前
3秒前
wangchaofk完成签到,获得积分10
3秒前
潇洒大白发布了新的文献求助10
4秒前
叁叁肆发布了新的文献求助10
5秒前
kk发布了新的文献求助10
5秒前
llllda发布了新的文献求助10
5秒前
完美世界应助rayce采纳,获得10
5秒前
moshi完成签到,获得积分10
6秒前
RRRZZ完成签到 ,获得积分10
8秒前
111发布了新的文献求助10
8秒前
背后思山完成签到,获得积分10
8秒前
sushi发布了新的文献求助10
8秒前
Jasper应助躺赢局局长采纳,获得30
9秒前
fannyeast完成签到,获得积分10
9秒前
Yang22完成签到,获得积分10
10秒前
10秒前
不不完成签到,获得积分10
11秒前
深情安青应助迷人依白采纳,获得10
11秒前
lp发布了新的文献求助20
11秒前
缥缈斓发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
无花果应助sushi采纳,获得10
13秒前
Echo725发布了新的文献求助10
13秒前
14秒前
柔弱如风发布了新的文献求助10
14秒前
王浩完成签到,获得积分10
14秒前
buguashushu完成签到,获得积分10
15秒前
TT关闭了TT文献求助
15秒前
王赤菽完成签到,获得积分10
15秒前
Hui发布了新的文献求助10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101859
求助须知:如何正确求助?哪些是违规求助? 3639421
关于积分的说明 11533152
捐赠科研通 3348063
什么是DOI,文献DOI怎么找? 1840041
邀请新用户注册赠送积分活动 907100
科研通“疑难数据库(出版商)”最低求助积分说明 824313