Soft Actor-Critic Algorithms and Applications

计算机科学 算法
作者
Tuomas Haarnoja,Aurick Zhou,Kristian Hartikainen,George Tucker,Sehoon Ha,Jie Tan,Vikash Kumar,Henry Zhu,Abhishek Gupta,Pieter Abbeel,Sergey Levine
出处
期刊:Cornell University - arXiv 被引量:1558
标识
DOI:10.48550/arxiv.1812.05905
摘要

Model-free deep reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. However, these methods typically suffer from two major challenges: high sample complexity and brittleness to hyperparameters. Both of these challenges limit the applicability of such methods to real-world domains. In this paper, we describe Soft Actor-Critic (SAC), our recently introduced off-policy actor-critic algorithm based on the maximum entropy RL framework. In this framework, the actor aims to simultaneously maximize expected return and entropy. That is, to succeed at the task while acting as randomly as possible. We extend SAC to incorporate a number of modifications that accelerate training and improve stability with respect to the hyperparameters, including a constrained formulation that automatically tunes the temperature hyperparameter. We systematically evaluate SAC on a range of benchmark tasks, as well as real-world challenging tasks such as locomotion for a quadrupedal robot and robotic manipulation with a dexterous hand. With these improvements, SAC achieves state-of-the-art performance, outperforming prior on-policy and off-policy methods in sample-efficiency and asymptotic performance. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving similar performance across different random seeds. These results suggest that SAC is a promising candidate for learning in real-world robotics tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助小鹿采纳,获得10
刚刚
哎呀妈呀完成签到,获得积分10
刚刚
1秒前
2秒前
Owen应助SPRETEND采纳,获得10
3秒前
张凤发布了新的文献求助10
3秒前
顺其自然完成签到 ,获得积分10
4秒前
5秒前
重七发布了新的文献求助30
5秒前
Dr大壮发布了新的文献求助30
5秒前
6秒前
6秒前
CipherSage应助发dasd采纳,获得10
6秒前
7秒前
7秒前
8秒前
9秒前
无花果应助如意草丛采纳,获得10
9秒前
奥丁蒂法发布了新的文献求助10
10秒前
always发布了新的文献求助30
11秒前
动漫大师发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
海不扬波发布了新的文献求助30
12秒前
ZhouYW应助qxqy6678采纳,获得10
12秒前
隐形曼青应助qxqy6678采纳,获得10
12秒前
12秒前
重七完成签到,获得积分20
12秒前
12秒前
13秒前
李小明发布了新的文献求助10
13秒前
sunshine完成签到,获得积分10
13秒前
张凤完成签到,获得积分10
14秒前
14秒前
14秒前
霖夏完成签到,获得积分10
15秒前
Jasper应助majm采纳,获得10
15秒前
yougepao完成签到,获得积分10
16秒前
Rage_Wang应助阔达的冷风采纳,获得20
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165