Spatiotemporal Variations of Vegetation NPP Based on GF-SG and kNDVI and Its Response to Climate Change and Human Activities: A Case Study of the Zoigê Plateau

高原(数学) 植被(病理学) 气候变化 环境科学 林业 自然地理学 生态学 地理 数学 生物 医学 数学分析 病理
作者
Li He,Yan Yuan,Zhengwei He,Jintai Pang,Yang Zhao,Wanting Zeng,Yuxin Cen,Yixian Xiao
出处
期刊:Forests [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 32-32 被引量:1
标识
DOI:10.3390/f16010032
摘要

Net primary productivity (NPP) is a key metric for evaluating ecosystem carbon sink capacity and defining vegetation. Despite extensive research on vegetation NPP, much relies on coarse spatial resolution data, which often overlooks regional spatial heterogeneity, causing inaccuracies in NPP estimates. Therefore, this study employed the improved CASA model, based on GF-SG and kNDVI methods, to estimate vegetation NPP at a 30 m spatial resolution on the Zoigê Plateau from 2001 to 2020. The effects of anthropogenic and climatic factors on NPP were quantified through residual and partial correlation analyses. These results indicated the following: (1) NDVI derived from the GF-SG fusion method aligns closely with Landsat NDVI (R2 ≈ 0.9). When contrasted with using NDVI alone, incorporating kNDVI into the CASA model enhances NPP assessment accuracy. (2) Vegetation NPP on the Zoigê Plateau has fluctuated upward by 2.09 gC·m−2·a−1 over the last two decades, with higher values centrally and lower at the edges. (3) Monthly partial correlation analysis indicates almost no temporal effects in NPP response to temperature (97.42%) but significant cumulative effects in response to precipitation (80.3%), with longer accumulation periods in the south. Annual analysis reveals that NPP correlates more strongly with temperature than precipitation. (4) NPP changes are jointly influenced by climate change (48.46%) and human activities (51.54%), with the latter being the dominant factor. This study deepens the understanding of NPP dynamics in the Zoigê Plateau and offers insights for estimating NPP at high spatial-temporal resolutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
不会失忆完成签到,获得积分10
2秒前
飞翔的帅猪完成签到,获得积分10
2秒前
简单的梦槐完成签到 ,获得积分10
2秒前
水菜泽子完成签到,获得积分10
3秒前
火星上玫瑰完成签到,获得积分10
3秒前
科研通AI2S应助杨叔叔采纳,获得10
4秒前
4秒前
天水碧发布了新的文献求助10
5秒前
6秒前
6秒前
惜曦完成签到 ,获得积分10
8秒前
CodeCraft应助Roger采纳,获得10
8秒前
9秒前
9秒前
共享精神应助咿咿呀呀采纳,获得10
10秒前
11秒前
科研通AI5应助Chaochao采纳,获得10
11秒前
宿舍发布了新的文献求助10
13秒前
zz发布了新的文献求助10
13秒前
Mansis发布了新的文献求助10
14秒前
魔幻若血发布了新的文献求助10
15秒前
虎皮青椒发布了新的文献求助10
15秒前
tradimed发布了新的文献求助10
15秒前
不会学术的羊完成签到,获得积分10
16秒前
zzz完成签到,获得积分10
17秒前
22秒前
24秒前
25秒前
lucky应助曲老师采纳,获得10
26秒前
咿咿呀呀发布了新的文献求助10
27秒前
29秒前
科研路上的干饭桶完成签到,获得积分10
29秒前
gyj发布了新的文献求助10
29秒前
29秒前
阿文文文完成签到,获得积分10
30秒前
ZoeyD完成签到 ,获得积分10
36秒前
chinwe发布了新的文献求助30
39秒前
畅快一一完成签到,获得积分10
40秒前
gyj完成签到,获得积分10
41秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472