Assessing project portfolio risk via an enhanced GA-BPNN combined with PCA

计算机科学 均方误差 人工神经网络 平均绝对百分比误差 支持向量机 主成分分析 随机森林 人工智能 反向传播 机器学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Libiao Bai,Chul Hwan Song,Xinyu Zhou,Yuanyuan Tian,Lan Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 106779-106779 被引量:16
标识
DOI:10.1016/j.engappai.2023.106779
摘要

Assessing project portfolio risk (PPR) is essential for organizations to grasp the overall risk levels of project portfolios (PPs) and realize PPR mitigation. However, current research is inadequate to effectively assess PPR, which brings challenges to managing PPR. In this context, the purpose of this study is to develop a PPR assessment model via an enhanced backpropagation neural network (BPNN). First, PPR assessment criteria considering project interdependencies are determined. Second, fuzzy logic is used to obtain original data for assessment criteria. Principal component analysis (PCA) is then employed to reduce the dimensionality of assessment criteria and derive the input and output of BPNN. Third, an improved genetic algorithm (IGA) is designed to optimize the initial weights and thresholds of BPNN. On this basis, the PCA-IGA-BPNN assessment model is constructed, followed by training and testing, possessing a test accuracy of 98.6%. Finally, comparison experiments are conducted from both internal and external perspectives. For internal comparison, the proposed model yields less mean absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) than PCA-GA-BPNN, IGA-BPNN, PCA-BPNN and BPNN and offers the largest convergence speed (γ). As for external comparison, the presented model produces lower MAPE, MSE, and RMSE than Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) and has the largest coefficient of determination (R2). Results indicate that the established model performs more satisfactorily in assessing PPR. This research enriches PPR assessment methods and provides managers with a useful tool to evaluate PPR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jiaxin_Wu完成签到 ,获得积分10
2秒前
LLQ发布了新的文献求助10
3秒前
芷兰丁香完成签到,获得积分10
5秒前
科研狗发布了新的文献求助10
6秒前
lay完成签到,获得积分20
7秒前
科研通AI5应助百里采纳,获得10
8秒前
摇光完成签到,获得积分10
8秒前
顾矜应助震动的曲奇采纳,获得10
11秒前
科研通AI5应助自然采纳,获得10
13秒前
wangrblzu应助臣臣想睡觉采纳,获得10
16秒前
16秒前
村口的帅老头完成签到 ,获得积分10
16秒前
17秒前
wangwangwang完成签到,获得积分10
20秒前
毛毛发布了新的文献求助10
21秒前
22秒前
25秒前
震动的曲奇完成签到,获得积分10
26秒前
Mercury完成签到 ,获得积分10
27秒前
28秒前
向美而死完成签到,获得积分20
29秒前
31秒前
wayne完成签到,获得积分10
32秒前
chx2256120完成签到,获得积分10
33秒前
美满的砖头完成签到 ,获得积分10
33秒前
光亮妙之完成签到,获得积分10
34秒前
Warming发布了新的文献求助10
34秒前
35秒前
35秒前
阿庭应助lilililllll采纳,获得10
35秒前
烟花应助小何0404采纳,获得10
37秒前
37秒前
凌凌漆应助科研通管家采纳,获得10
37秒前
37秒前
情怀应助科研狗采纳,获得10
37秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
37秒前
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386113
关于积分的说明 10543746
捐赠科研通 3106834
什么是DOI,文献DOI怎么找? 1711181
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774390