亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-adaptive physics-informed neural networks

人工神经网络 计算机科学 统计物理学 人工智能 理论物理学 物理
作者
Levi D. McClenny,Ulisses Braga-Neto
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:474: 111722-111722 被引量:233
标识
DOI:10.1016/j.jcp.2022.111722
摘要

Physics-Informed Neural Networks (PINNs) have emerged recently as a promising application of deep neural networks to the numerical solution of nonlinear partial differential equations (PDEs). However, it has been recognized that adaptive procedures are needed to force the neural network to fit accurately the stubborn spots in the solution of “stiff” PDEs. In this paper, we propose a fundamentally new way to train PINNs adaptively, where the adaptation weights are fully trainable and applied to each training point individually, so the neural network learns autonomously which regions of the solution are difficult and is forced to focus on them. The self-adaptation weights specify a soft multiplicative soft attention mask, which is reminiscent of similar mechanisms used in computer vision. The basic idea behind these SA-PINNs is to make the weights increase as the corresponding losses increase, which is accomplished by training the network to simultaneously minimize the losses and maximize the weights. In addition, we show how to build a continuous map of self-adaptive weights using Gaussian Process regression, which allows the use of stochastic gradient descent in problems where conventional gradient descent is not enough to produce accurate solutions. Finally, we derive the Neural Tangent Kernel matrix for SA-PINNs and use it to obtain a heuristic understanding of the effect of the self-adaptive weights on the dynamics of training in the limiting case of infinitely-wide PINNs, which suggests that SA-PINNs work by producing a smooth equalization of the eigenvalues of the NTK matrix corresponding to the different loss terms. In numerical experiments with several linear and nonlinear benchmark problems, the SA-PINN outperformed other state-of-the-art PINN algorithm in L2 error, while using a smaller number of training epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色冥幽完成签到 ,获得积分10
10秒前
14秒前
Juvianne完成签到 ,获得积分10
17秒前
NexusExplorer应助Imstemcell采纳,获得10
19秒前
sci2025opt完成签到 ,获得积分10
25秒前
25秒前
西米发布了新的文献求助10
30秒前
41秒前
Akim应助科研通管家采纳,获得10
44秒前
我是老大应助科研通管家采纳,获得10
44秒前
44秒前
44秒前
47秒前
顾矜应助annis采纳,获得10
58秒前
1分钟前
1分钟前
MchemG应助kento采纳,获得50
1分钟前
1分钟前
美罗培南完成签到,获得积分0
1分钟前
Imstemcell发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研小菜狗完成签到 ,获得积分10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
Akim应助bearhong采纳,获得20
1分钟前
1分钟前
1分钟前
Criminology34举报可爱如音求助涉嫌违规
1分钟前
kento完成签到,获得积分0
1分钟前
1分钟前
1分钟前
annis发布了新的文献求助10
1分钟前
1分钟前
MEDwhy发布了新的文献求助10
1分钟前
1分钟前
bearhong发布了新的文献求助20
1分钟前
我是老大应助西米采纳,获得10
2分钟前
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418250
求助须知:如何正确求助?哪些是违规求助? 4533960
关于积分的说明 14142924
捐赠科研通 4450231
什么是DOI,文献DOI怎么找? 2441133
邀请新用户注册赠送积分活动 1432869
关于科研通互助平台的介绍 1410170