Durable Lubricant-Impregnated Surfaces for Water Collection under Extremely Severe Working Conditions

材料科学 润滑油 复合材料 化学工程 纳米技术 工程类
作者
Xueshan Jing,Zhiguang Guo
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (39): 35949-35958 被引量:60
标识
DOI:10.1021/acsami.9b08885
摘要

It is worth noting that the multifunctional surfaces are highly desirable for water collection applications on droplet nucleation and removal. Although the superhydrophobic surfaces is beneficial to water collection due to easily shed liquid drops and favorable heat-transfer performance, the pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation severely limit the water collection efficiency. Recently, the liquid-infused surfaces have been significant for condensation heat transfer and droplet nucleation but have poor durability. In this work, under the UV light, polydimethylsiloxane was grafted onto ZnO nanorods (through Zn-O-Si bond), and the residual unbonded silicone oil was used as the lubricant, so that it form a hierarchical lubricant-impregnated surfaces. Because of high viscosity of silicone oil and strong intermolecular force between silicone oil and PDMS brush, the lubricant can be firmly fixed in micronanostructure to form a durable lubricant layer. For example, the LISs have outstanding properties such as boiling water repellency, omniphobicity of various liquid, and hot water resistance. Under a self-made hot vapor collection device, the surface can maintain good water collection capacity and there is no obvious change in the lubrication layer. After exposing in sunlight for 7 days and subjecting them to 25 times heating/cooling cycles (heating at 150 °C), the LISs exhibit excellent water collection and repairability. After measurement, the oil content in the water is 43 mg/L, which is harmless to the human body. Through the high-water collection efficiency and durable lubricant layer, the LISs can be applied on a large scale in the water collection industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cora发布了新的文献求助10
1秒前
mraze发布了新的文献求助10
1秒前
1秒前
可可发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
完美世界应助xifan采纳,获得10
3秒前
3秒前
YBKY_2099完成签到,获得积分10
4秒前
风趣凝海完成签到,获得积分10
4秒前
zhao完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
sztao发布了新的文献求助10
6秒前
JamesPei应助遐蝶采纳,获得30
6秒前
6秒前
李哈哈发布了新的文献求助10
6秒前
有魅力老三完成签到 ,获得积分10
7秒前
咿咿呀呀发布了新的文献求助10
8秒前
包容新蕾发布了新的文献求助10
8秒前
cora完成签到,获得积分20
9秒前
yangxt-iga完成签到,获得积分10
9秒前
9秒前
王王发布了新的文献求助10
9秒前
yy完成签到,获得积分10
10秒前
牛肉面完成签到,获得积分0
10秒前
10秒前
Yipou发布了新的文献求助10
10秒前
11秒前
12完成签到,获得积分10
12秒前
宴之思完成签到,获得积分10
13秒前
yue11974完成签到 ,获得积分10
13秒前
Mabel完成签到,获得积分10
14秒前
14秒前
Anoxia发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
可瓷化聚合物复合材料的制备及成瓷性能、机理研究 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869826
求助须知:如何正确求助?哪些是违规求助? 3412150
关于积分的说明 10677830
捐赠科研通 3136487
什么是DOI,文献DOI怎么找? 1730281
邀请新用户注册赠送积分活动 833847
科研通“疑难数据库(出版商)”最低求助积分说明 780956