Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations

溅射 等离子体 联轴节(管道) 接口(物质) 气相 曲面(拓扑) 材料科学 相(物质) 化学物理 化学 纳米技术 物理 薄膜 物理化学 复合材料 核物理学 几何学 数学 有机化学 毛细管数 毛细管作用
作者
Florian Krüger,Tobias Gergs,Jan Trieschmann
出处
期刊:Plasma Sources Science and Technology [IOP Publishing]
卷期号:28 (3): 035002-035002 被引量:38
标识
DOI:10.1088/1361-6595/ab0246
摘要

Thin film processing by means of sputter deposition inherently depends on the interaction of energetic particles with a target surface and the subsequent particle transport. The length and time scales of the underlying physical phenomena span orders of magnitudes. A theoretical description which bridges all time and length scales is not practically possible. Advantage can be taken particularly from the well-separated time scales of the fundamental surface and plasma processes. Initially, surface properties may be calculated from a surface model and stored for a number of representative cases. Subsequently, the surface data may be provided to gas-phase transport simulations via appropriate model interfaces (e.g., analytic expressions or look-up tables) and utilized to define insertion boundary conditions. During run-time evaluation, however, the maintained surface data may prove to be not sufficient. In this case, missing data may be obtained by interpolation (common), extrapolation (inaccurate), or be supplied on-demand by the surface model (computationally inefficient). In this work, a potential alternative is established based on machine learning techniques using artificial neural networks. As a proof of concept, a multilayer perceptron network is trained and verified with sputtered particle distributions obtained from transport of ions in matter based simulations for Ar projectiles bombarding a Ti-Al composite. It is demonstrated that the trained network is able to predict the sputtered particle distributions for unknown, arbitrarily shaped incident ion energy distributions. It is consequently argued that the trained network may be readily used as a machine learning based model interface (e.g., by quasi-continuously sampling the desired sputtered particle distributions from the network), which is sufficiently accurate also in scenarios which have not been previously trained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃颗电池发布了新的文献求助30
刚刚
小王小王熬夜大王完成签到,获得积分10
刚刚
wy发布了新的文献求助10
刚刚
dew应助打工人42号采纳,获得10
刚刚
丢丢发布了新的文献求助10
1秒前
烟花应助小石头采纳,获得10
2秒前
不想学习的新之助完成签到,获得积分10
2秒前
震动的往事完成签到,获得积分10
3秒前
3秒前
3秒前
天空发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
Esther完成签到,获得积分10
4秒前
YLC完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
张姣姣发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
个性的萝完成签到,获得积分20
6秒前
7秒前
llllzzh发布了新的文献求助30
7秒前
zz完成签到,获得积分10
7秒前
7秒前
li完成签到,获得积分10
7秒前
李爱国应助Tiliar采纳,获得20
7秒前
大胆诗云应助1433223采纳,获得10
8秒前
8秒前
8秒前
8秒前
风中冰香应助huangjohn采纳,获得10
9秒前
研友_GZbjPZ关注了科研通微信公众号
9秒前
9秒前
XinYang发布了新的文献求助10
9秒前
xiaolei001应助小匀匀21采纳,获得10
9秒前
9秒前
penghuiye完成签到,获得积分10
10秒前
柯不正完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182