Joint semantic–geometric learning for polygonal building segmentation from high-resolution remote sensing images

分割 计算机科学 多边形(计算机图形学) 顶点(图论) 人工智能 图像分割 像素 尺度空间分割 图形 计算机视觉 模式识别(心理学) 理论计算机科学 电信 帧(网络)
作者
Weijia Li,Wenqian Zhao,Jinhua Yu,Juepeng Zheng,Conghui He,Haohuan Fu,Dahua Lin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 26-37 被引量:23
标识
DOI:10.1016/j.isprsjprs.2023.05.010
摘要

As a fundamental task for geographical information updating, 3D city modeling, and other critical applications, the automatic extraction of building footprints from high-resolution remote sensing images has been substantially explored and received increasing attention over recent years. Among different types of building extraction methods, the polygonal segmentation methods produce vector building polygons that are in a more realistic format compared with those obtained from pixel-wise semantic labeling and contour-based methods. However, existing polygonal building segmentation methods usually require a perfect segmentation map and a complex post-processing procedure to guarantee the polygonization quality, or produce inaccurate vertex prediction results that suffer from wrong vertex sequence, self-intersections, fixed vertex quantity, etc. In our previous work, we have proposed a method for polygonal building segmentation from remote sensing images that addresses the above limitations of existing methods. In this paper, we propose PolyCity, which further extends and improves our previous work in terms of the application scenario, methodology design, and experimental results. Our proposed PolyCity contains the following three components: (1) a pixel-wise multi-task network for learning the semantic and geometric information via three tasks, i.e., building segmentation, boundary prediction, and edge orientation prediction; (2) a simple but effective vertex selection module (VSM), which effectively bridges the gap between pixel-wise and graph-based models via transforming the segmentation map into valid polygon vertices; (3) a graph-based vertex refinement network (VRN) for automatically adjusting the coordinates of VSM-generated valid polygon vertices, producing the final building polygons with more precise vertices. Results on three large-scale building extraction datasets demonstrate that our proposed PolyCity generates vector building footprints with more accurate vertices, edges, shapes, etc., achieving significant vertex score improvements while maintaining high segmentation and boundary scores compared with the current state-of-the-art. The code of PolyCity will be released at https://github.com/liweijia/polycity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助我世界第一快采纳,获得10
刚刚
Ava应助付理想采纳,获得10
刚刚
南风完成签到 ,获得积分10
1秒前
英姑应助曾珍采纳,获得10
1秒前
2秒前
大模型应助su采纳,获得10
2秒前
科研通AI5应助柔弱的盼柳采纳,获得10
3秒前
上官若男应助木同采纳,获得10
3秒前
zyshao发布了新的文献求助10
4秒前
4秒前
iTaciturne发布了新的文献求助10
5秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
编号89757完成签到,获得积分10
6秒前
6秒前
Iris完成签到 ,获得积分10
7秒前
煎饼狗子发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
你的完成签到 ,获得积分10
7秒前
贝涛发布了新的文献求助30
7秒前
crystal发布了新的文献求助10
7秒前
8秒前
真实的天蓉完成签到,获得积分10
8秒前
8秒前
科研通AI5应助刘zz采纳,获得10
9秒前
菠萝炒蛋加饭完成签到 ,获得积分10
9秒前
HAHAHA完成签到,获得积分10
9秒前
空白完成签到,获得积分10
10秒前
pluto应助科研通管家采纳,获得20
10秒前
10秒前
Hunting完成签到 ,获得积分10
10秒前
IBMffff发布了新的文献求助30
11秒前
Owen应助科研通管家采纳,获得10
13秒前
常尽欢完成签到 ,获得积分10
14秒前
王羊补牢完成签到 ,获得积分10
15秒前
迷你的水绿完成签到,获得积分10
15秒前
惜曦发布了新的文献求助10
16秒前
nozero应助黑色幽默采纳,获得50
16秒前
NexusExplorer应助烯灯采纳,获得10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828014
求助须知:如何正确求助?哪些是违规求助? 3370280
关于积分的说明 10462497
捐赠科研通 3090257
什么是DOI,文献DOI怎么找? 1700281
邀请新用户注册赠送积分活动 817810
科研通“疑难数据库(出版商)”最低求助积分说明 770442