The neural resource allocation problem when enhancing human bodies with extra robotic limbs

计算机科学 机器人学 人工智能 人机交互 可穿戴计算机 可穿戴技术 机器人 资源(消歧) 嵌入式系统 计算机网络
作者
Giulia Dominijanni,Solaiman Shokur,Gionata Salvietti,Sarah Buehler,Erica Palmerini,Símone Rossi,Frédérique de Vignemont,Andrea d’Avella,Tamar R. Makin,Domenico Prattichizzo,Silvestro Micera
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (10): 850-860 被引量:67
标识
DOI:10.1038/s42256-021-00398-9
摘要

The emergence of robotic body augmentation provides exciting innovations that will revolutionize the fields of robotics, human–machine interaction and wearable electronics. Although augmentative devices such as extra robotic arms and fingers are informed by restorative technologies in many ways, they also introduce unique challenges for bidirectional human–machine collaboration. Can humans adapt and learn to operate a new robotic limb collaboratively with their biological limbs, without restricting other physical abilities? To successfully achieve robotic body augmentation, we need to ensure that, by giving a user an additional (artificial) limb, we are not trading off the functionalities of an existing (biological) one. Here, we introduce the ‘neural resource allocation problem’ and discuss how to allow the effective voluntary control of augmentative devices without compromising control of the biological body. In reviewing the relevant literature on extra robotic fingers and arms, we critically assess the range of potential solutions available for this neural resource allocation problem. For this purpose, we combine multiple perspectives from engineering and neuroscience with considerations including human–machine interaction, sensory–motor integration, ethics and law. In summary, we aim to define common foundations and operating principles for the successful implementation of robotic body augmentation. The development of extra fingers and arms is an exciting research area in robotics, human–machine interaction and wearable electronics. It is unclear, however, whether humans can adapt and learn to control extra limbs and integrate them into a new sensorimotor representation, without sacrificing their natural abilities. The authors review this topic and describe challenges in allocating neural resources for robotic body augmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
法不拉底发布了新的文献求助10
刚刚
爆米花应助AteeqBaloch采纳,获得10
2秒前
东北信风完成签到,获得积分10
2秒前
ljr完成签到 ,获得积分10
2秒前
2秒前
怕黑书翠完成签到,获得积分10
2秒前
梁海萍完成签到,获得积分10
3秒前
3秒前
Lucas应助优秀的大白菜采纳,获得10
3秒前
天天快乐应助smile采纳,获得10
3秒前
4秒前
4秒前
英姑应助爱大美采纳,获得10
5秒前
HYC完成签到,获得积分10
6秒前
Why_123完成签到,获得积分10
6秒前
wanci应助陈功人士采纳,获得10
6秒前
木木发布了新的文献求助10
6秒前
7秒前
大豪发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
NGU发布了新的文献求助10
10秒前
10秒前
小郭完成签到,获得积分10
12秒前
chyu1057发布了新的文献求助10
12秒前
13秒前
14秒前
米花完成签到 ,获得积分10
14秒前
领导范儿应助鲤鱼越越采纳,获得10
15秒前
小北发布了新的文献求助10
16秒前
16秒前
yangquanquan完成签到,获得积分10
16秒前
852应助Cuikangjie采纳,获得10
16秒前
16秒前
冷酷钢笔完成签到,获得积分10
16秒前
17秒前
落墨发布了新的文献求助10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445