颗粒(地质)
澄清器
活性污泥
沉淀
生物反应器
环境科学
制浆造纸工业
流出物
化学
环境工程
化学工程
污水处理
材料科学
工程类
复合材料
有机化学
作者
Clément Roche,Sylvain Donnaz,Sudhir Murthy,Bernhard Wett
摘要
Full-scale demonstration of activated sludge conversion into a granule-floc hybrid process was implemented in Dijon (France) water resource recovery facility (WRRF). Biomass densification was achieved based on external gravimetric selection using hydrocyclones within continuous-flow anaerobic-anoxic-oxic (A2 O) biological nutrient removal (BNR) bioreactor. The goal was to optimize settleability of biological sludge by lowering and stabilizing sludge volume index (SVI) to improve process robustness and resiliency. Process proved to stabilize operation and to uncouple the total solids residence time (SRT) between floc and granule morphologies. The densified biomass initially produced stable SVI < 100 ml/g for a period of 4 months and thereafter a steady state year-round SVI below 50 ml/g, including the winter period during which the control train SVI expansion >200 ml/g. The densified biomass successfully broke the vicious cycle of interannual bulking. Form and function interrelationship is proposed for the densified biomass (hybrid floc-granule). The concept of biological architecture is proposed as the purposeful control of granule and floc proportions, with a proposed "form factor" ratio of 1:2 granule to floc, that produce a "SRT uncoupling function factor" ratio of 4:1 granule to floc, further resulting in very stable settling and effluent functionalities. PRACTITIONER POINTS: Controlling granule-floc proportions allows for sludge volume index (SVI) operational adjustment, which further allows for increased clarified design accuracy. One-third aggregates dramatically improved settling characteristics: 20% and 35% of AGS ensures SVIs below 100 and 50 ml/g, respectively. Densified biomass enables new SRT and clarifier flux rates approaches for engineering and operation practices: Doubling typical surface loading rates from 6.0-8.5 to 15-20 kg m-2 h-1 and surface overflow rates from 0.6-0.8 to 1.5-2.4 m/h SRT uncoupling of 1:4 is achieved between floc and granule, enabling specific niche environment for fast and slow growing organisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI