Development of a diagnostic model focusing on nutritional indicators for frailty classification in people with chronic heart failure

医学 心力衰竭 微量营养素 统计的 叶酸 内科学 统计 病理 数学
作者
Yiqin Gu,Chaofeng Li,Jing Yan,Guo-Ping Yin,LU Gui-lan,Sha Li,Yan Song,Yanyan Wang
出处
期刊:European Journal of Cardiovascular Nursing [Oxford University Press]
卷期号:21 (4): 356-365 被引量:6
标识
DOI:10.1093/eurjcn/zvab080
摘要

Abstract Aims Frailty has a great impact on the quality of life of patients with chronic heart failure (CHF), which needs to be judged in time. To develop a diagnostic model based on nutritional indicators to judge the frailty status of patients with chronic heart failure (Frailty-CHF). Methods and results In the data collection part of this study, questionnaire method and biomedical measurement method were adopted. The trace elements in serum samples were detected by high performance liquid chromatography, chemiluminescence, and inductively coupled plasma mass spectrometry. We used Excel for data consolidation, and then imported the data into R software for modelling. Lasso method was used for variable screening, and Logistics regression fitting model was used after variables were determined. The internal validation of the model was completed by Bootstrap re-sampling. A total of 123 patients were included in this study. After variables’ screening, age, nutritional status-heart failure, New York Heart Association Functional Class (NYHA), micronutrients B12, Ca, folic acid, and Se were included in the model, the c statistic and Brier score of the original model were 0.9697 and 0.0685, respectively. After Bootstrap re-sampling adjustment, the c statistic and Brier score were 0.8503 and 0.1690. Conclusion In this study, a diagnostic model of age, nutritional status-heart failure, NYHA, the micronutrients B12, Ca, folic acid, and Se was established. It could help healthcare professionals better identify the frailty status in patients with CHF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一条小胖鱼完成签到,获得积分10
刚刚
充电宝应助WJ采纳,获得10
1秒前
1秒前
1秒前
ni发布了新的文献求助10
2秒前
2秒前
eric发布了新的文献求助20
2秒前
霡霂发布了新的文献求助10
3秒前
武大聪明丶完成签到,获得积分10
3秒前
3秒前
欢喜烧鹅完成签到,获得积分10
4秒前
Owen应助kerguelen采纳,获得30
5秒前
5秒前
无名发布了新的文献求助30
6秒前
7秒前
小张完成签到,获得积分10
7秒前
共享精神应助yuanyueyue采纳,获得30
9秒前
9秒前
安静的水完成签到,获得积分10
9秒前
CaiBangrong完成签到,获得积分10
10秒前
风清扬应助Mefhitos采纳,获得30
10秒前
Dean发布了新的文献求助10
12秒前
13秒前
大个应助dosungnie采纳,获得10
13秒前
可爱的函函应助lxg采纳,获得10
13秒前
李健的小迷弟应助lcj1014采纳,获得10
14秒前
16秒前
16秒前
华无心完成签到 ,获得积分10
17秒前
18秒前
18秒前
追风发布了新的文献求助10
18秒前
CipherSage应助是真的不吃鱼采纳,获得10
18秒前
吨吨完成签到,获得积分10
18秒前
zhang完成签到 ,获得积分10
18秒前
19秒前
cobo完成签到,获得积分10
19秒前
21秒前
小情绪发布了新的文献求助10
22秒前
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208491
求助须知:如何正确求助?哪些是违规求助? 4386000
关于积分的说明 13659449
捐赠科研通 4244993
什么是DOI,文献DOI怎么找? 2329043
邀请新用户注册赠送积分活动 1326831
关于科研通互助平台的介绍 1279056