Efficient Reliability-Based Path Planning of Off-Road Autonomous Ground Vehicles Through the Coupling of Surrogate Modeling and RRT*

可靠性(半导体) 替代模型 运动规划 路径(计算) 计算机科学 约束(计算机辅助设计) 地形 数学优化 随机树 工程类 人工智能 数学 机器学习 机械工程 生态学 功率(物理) 物理 量子力学 机器人 生物 程序设计语言
作者
Jianhua Yin,Zhen Hu,Zissimos P. Mourelatos,David Gorsich,Amandeep Singh,Seth Tau
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 15035-15050 被引量:12
标识
DOI:10.1109/tits.2023.3296651
摘要

Reliability-based global path planning incorporates reliability constraints into path planning to ensure that off-road autonomous ground vehicles can operate reliably in uncertain off-road environments. Current two-stage reliability-based path planning methods involve separate stages for surrogate modeling of mobility prediction and global path planning, resulting in a large number of unnecessary mobility simulations that makes the approaches computationally expensive. To tackle this challenge, this work proposes a novel efficient reliability-based global path planning approach, named ER-RRT*, which couples adaptive surrogate modeling with the rapidly-exploring random tree star (RRT*) algorithm. Firstly, a surrogate model for vehicle mobility prediction is used to guide the exploration of random trees subject to a mobility reliability constraint. Subsequently, the exploration trees and reliability assessment are employed to inform mobility simulations for the surrogate model refinement. These steps are implemented iteratively and thereby drastically reducing the required mobility simulations for path planning through the integration of adaptive surrogate modeling with global path planning. With a focus on the uncertainty in the slope map and soil properties of deformable terrain, we demonstrate ER-RRT* using a case study and compare it with the current two-stage approach. The results show that ER-RRT* is much more efficient than the current method in both computational time and the required number of mobility simulations for surrogate model construction. In addition, the path identified by ER-RRT* exhibits a comparable cost in distance to its counterpart obtained using the two-stage method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的诗珊完成签到 ,获得积分10
3秒前
4秒前
xinyueyue完成签到,获得积分10
5秒前
dyyisash完成签到 ,获得积分10
8秒前
孙燕应助jam采纳,获得10
8秒前
9秒前
9秒前
依古比古完成签到 ,获得积分10
10秒前
11秒前
ling_lz完成签到,获得积分10
12秒前
飞快的笑容完成签到,获得积分20
13秒前
sam发布了新的文献求助10
15秒前
文鞅发布了新的文献求助10
15秒前
周老八发布了新的文献求助10
15秒前
li2000722完成签到 ,获得积分10
15秒前
smile完成签到,获得积分10
16秒前
所所应助TTT0530采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
20秒前
冰魂应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
123完成签到,获得积分10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
21秒前
Ava应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得30
22秒前
dox应助科研通管家采纳,获得10
22秒前
JamesPei应助泡沫没有冰采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843657
求助须知:如何正确求助?哪些是违规求助? 3385947
关于积分的说明 10543274
捐赠科研通 3106748
什么是DOI,文献DOI怎么找? 1711147
邀请新用户注册赠送积分活动 823921
科研通“疑难数据库(出版商)”最低求助积分说明 774390