Dual energy CT and deep learning for an automated volumetric segmentation of the major intracranial tissues: Feasibility and initial findings

分割 人工智能 计算机科学 深度学习 基本事实 磁共振成像 杠杆(统计) 白质 模式识别(心理学) 医学影像学 计算机视觉 图像分割 成像生物标志物 核医学 相似性(几何) 计算机断层摄影术 体素 神经影像学 双重能量 基线(sea)
作者
Veronica Fransson,Filip Winzell,Birgitta Ramgren,Sören Christensen,Kristina Ydström,Ida Arvidsson,Niels Christian Overgaard,Kalle Åström,Anders Heyden,Johan Wassélius
出处
期刊:Medical Physics [Wiley]
卷期号:53 (1): e70217-e70217
标识
DOI:10.1002/mp.70217
摘要

Abstract Background Magnetic resonance imaging (MRI) has traditionally been preferred over computed tomography (CT) for segmentation of intracranial structures due to its superior low contrast resolution. However, a reliable CT‐based segmentation could improve patient management when MRI is not practical. Despite advancements in CT imaging, such as enhanced tissue differentiation using virtual monoenergetic imaging (VMI) from dual energy CT, volumetric analysis remains underexplored. Purpose The aim was to evaluate the feasibility of using deep learning (DL) models for segmentation of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)—using virtual monoenergetic images (VMI). Methods The study included 26 patients (training/validation: 21, test: 5) who underwent brain imaging on a dual‐layer CT and a T1‐weighted MR scan. MR‐based segmentation of GM, WM, and CSF served as the ground truth for training and testing of the DL models. Models included a baseline U‐Net++ trained on 70 keV VMIs and several U‐Net and U‐Net++ extensions designed to leverage spectral information from multiple VMIs (50, 70, and 120 keV). Model performance was evaluated using Dice Similarity Coefficient (DSC) and volumetric accuracy. Results The U‐Net++ (Aug) model, using VMIs as augmentations of the input data, outperformed the baseline and other models with DSC 0.84, 0.77, and 0.88 for WM, GM, and CSF, respectively. The superiority was significant compared to several of the other models, and most notably compared to the baseline model with DSC of 0.81 for WM ( p = 0.002) and 0.75 for GM ( p = 0.002). U‐Net++ (Aug) had an average volumetric error of 12%, while U‐Net (Gated) had the lowest error at 10%. Conclusions This study demonstrates the feasibility of CT‐based segmentation of intracranial tissue using DL and VMI. The improved accuracy of the U‐Net++ (Aug) compared to the baseline model suggests that spectral information may enhance segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子月亮完成签到,获得积分10
刚刚
共享精神应助小胡先森采纳,获得10
1秒前
CipherSage应助dddd采纳,获得30
2秒前
傅英俊完成签到,获得积分10
2秒前
3秒前
3秒前
BenQiu发布了新的文献求助10
4秒前
鱼0306完成签到,获得积分10
5秒前
善良的函发布了新的文献求助10
5秒前
挡住所有坏运气888完成签到,获得积分10
5秒前
锂安完成签到,获得积分10
6秒前
6秒前
7秒前
dhzlzz完成签到,获得积分10
7秒前
情怀应助Salt_fish采纳,获得10
7秒前
852应助duliqin采纳,获得10
7秒前
7秒前
8秒前
陶瓷小罐完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
纯真玉兰完成签到 ,获得积分10
9秒前
开开心心完成签到 ,获得积分10
9秒前
桐桐应助white_out采纳,获得10
9秒前
9秒前
二分三分完成签到,获得积分10
10秒前
加油小白菜完成签到,获得积分20
10秒前
犹豫的绝悟完成签到 ,获得积分10
10秒前
10秒前
100完成签到,获得积分0
10秒前
丹丹丹发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
u亩完成签到 ,获得积分10
12秒前
五1232发布了新的文献求助10
12秒前
WAMK发布了新的文献求助10
13秒前
louis dai发布了新的文献求助10
14秒前
fan完成签到,获得积分10
14秒前
15秒前
完美世界应助Moyanmisheng采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243