Optimized Number and Type of Cells for Pre-Enrichment of Adipose Tissue Grafts for Maximum Fat Retention

医学 脂肪组织 基质血管部分 脂肪垫 脂肪细胞 白色脂肪组织
作者
Mahmood S Choudhery
出处
期刊:Plastic and Reconstructive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:145 (4): 875e-876e 被引量:1
标识
DOI:10.1097/prs.0000000000006663
摘要

Sir: An interesting article entitled “Cell-Enriched Fat Grafting Improves Graft Retention in a Porcine Model: A Dose-Response Study of Adipose-Derived Stem Cells versus Stromal Vascular Fraction,” by Rasmussen et al., was recently published in Plastic and Reconstructive Surgery.1 In this article, the authors described pre-enrichment of fat grafts with different concentrations (2.5 × 106 to 20 × 106) of culture-expanded adipose stem cells and also with stromal vascular fraction of adipose tissue in a 1:1 concentration. The pre-enriched fat grafts (30 ml) were injected in a minipig. The use of different adipose stem cell concentrations, direct comparison of adipose stem cells with stromal vascular fraction, assessment with magnetic resonance imaging, and use of animals (minipigs) that also served as their own controls are venerable for performing such studies and to answer some current hot questions, such as “what is the optimized number and type of cells for maximized fat retention?” Fat grafting is not a new technique. It has been used successfully for decades by plastic surgeons for aesthetic and reconstructive purposes. It was later realized by surgeons that the beneficial effects of fat grafting are actually due to regenerative cells in adipose tissue. These regenerative cells exert their positive effects by differentiating into tissue-specific cells and by their paracrine mechanism. During adipose tissue processing, these regenerative cells can be obtained at two stages: (1) as stromal vascular fraction, the pellet obtained after digestion with collagenase followed by centrifugation, and (2) as adipose stem cells, which is a pure population of mesenchymal stem cells obtained by further culturing of stromal vascular fraction. In their study, Rasmussen et al.1 noted more fat retention in cell-pre-enriched groups as compared with nonenriched grafts. Although there was no significant difference among cell-enriched groups, the authors found higher graft retention (41 percent) in the 10 × 106 group. Interestingly, doubling this number does not seem to enhance more graft retention. To correctly find the optimized number of cells, more groups should be added, instead of directly doubling this (10 × 106) number. Previously, my colleagues and I used 1 × 106 cells/ml for fat pre-enrichment and found significant fat retention in patients with contour deformities of the face.2,3 In addition, there may be more graft retention if a model with some disease or deformity is used. Without an internal signal in the form of an injury or inflammation, there is more chance of graft absorption. Most importantly, the authors did not find a difference in fat graft retention when grafts were enriched with either adipose stem cells or stromal vascular fraction. This finding is very important, because if similar results can be obtained using stromal vascular fraction instead of culture-expanded adipose stem cells, it will make the overall procedure of fat grafting less expensive (no culturing of cells is required) and reduce patient discomfort (a single liposuction procedure is required instead of two). It is, however, not clear from the study how stromal vascular fraction–enriched fat grafts can have similar retention as seen with pre-enriched adipose stem cells. The beneficial effects of using adipose stem cells or stromal vascular fraction are due to regenerative cells. However, stromal vascular fraction only contains approximately 3 percent of these regenerative cells in it. If this effect is due to paracrine factors in stromal vascular fraction and not due to the (3 percent) adipose stem cells in stromal vascular fraction, then another group excluding these adipose stem cells from stromal vascular fraction must be used to compare with control and adipose stem cell–enriched fat grafts. Adipose stem cells are attached to the plastic surface within hours of stromal vascular fraction culturing and thus can easily be excluded. Such comparison is crucial to correctly define the optimized cell type or cell fraction for pre-enriched grafts. In addition to this discrepancy, the authors harvested adipose tissue from the neck region for isolation of stromal vascular fraction, whereas it was harvested overall from the dorsal area, which raises questions for this comparison. Furthermore, first medium replacement on day 6 (it is usually after 24 hours) and subculturing at 100 percent (it is usually at 70 percent to 90 percent confluence) may also have compromised culture purity and cell viability, respectively. DISCLOSURE The author has no financial conflicts of interest to disclose.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李子敬发布了新的文献求助10
刚刚
CC发布了新的文献求助10
刚刚
刚刚
朴实寻琴完成签到 ,获得积分10
刚刚
2秒前
ChenYX发布了新的文献求助10
2秒前
安红豆发布了新的文献求助10
2秒前
番茄鱼完成签到 ,获得积分10
2秒前
怕孤单的奇异果完成签到,获得积分10
2秒前
小马甲应助小孙失策了采纳,获得10
4秒前
4秒前
无花果应助等待的谷波采纳,获得10
4秒前
qimingran发布了新的文献求助10
5秒前
自由行走的花完成签到,获得积分10
5秒前
panda完成签到 ,获得积分10
5秒前
百里发布了新的文献求助10
6秒前
badada完成签到 ,获得积分10
7秒前
7秒前
FFF发布了新的文献求助10
8秒前
冲冲冲完成签到,获得积分10
9秒前
Amosummer发布了新的文献求助10
9秒前
CipherSage应助zy采纳,获得10
10秒前
烟花应助范范采纳,获得10
10秒前
从容的天空完成签到,获得积分10
11秒前
11秒前
11秒前
Orange应助weddcf采纳,获得10
11秒前
aaaaa完成签到 ,获得积分20
11秒前
12秒前
HYLynn完成签到,获得积分10
12秒前
13秒前
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
高高远山完成签到,获得积分10
16秒前
张汉三发布了新的文献求助10
16秒前
研友_P85D6Z完成签到,获得积分10
16秒前
16秒前
LOTUS发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297