数学
流行病模型
Neumann边界条件
光谱半径
反应扩散系统
基本再生数
操作员(生物学)
Volterra积分方程
边值问题
常量(计算机编程)
应用数学
数学分析
边界(拓扑)
非线性系统
积分方程
特征向量
计算机科学
人口
人口学
基因
物理
转录因子
量子力学
社会学
抑制因子
生物化学
化学
程序设计语言
作者
Abdennasser Chekroun,Toshikazu Kuniya
标识
DOI:10.1080/00036811.2018.1551997
摘要
In this paper, we are concerned with an SIR epidemic model with infection age and spatial diffusion in the case of Neumann boundary condition. The original model is constructed as a nonlinear age structured system of reaction–diffusion equations. By using the method of characteristics, we reformulate the model into a system of a reaction–diffusion equation and a Volterra integral equation. For the reformulated system, we define the basic reproduction number R0 by the spectral radius of the next generation operator, and show that if R0<1, then the trivial disease-free steady state is globally attractive, whereas if R0>1, then the disease in the system is persistent. Moreover, under an additional assumption that there exists a finite maximum age of infectiousness, we show the global attractivity of a constant endemic steady state for R0>1.
科研通智能强力驱动
Strongly Powered by AbleSci AI