谷氨酸棒杆菌
淀粉
赖氨酸
发酵
拉伤
生物化学
淀粉酶
甘油
食品科学
酶
玉米淀粉
化学
生物
氨基酸
基因
解剖
作者
Changlong Li,Hao-Zhe Ruan,Li Liu,Zhang Wei-guo,Jian-Zhong Xu
标识
DOI:10.1007/s00253-021-11714-z
摘要
This article focuses on engineering Corynebacterium glutamicum to produce L-lysine efficiently from starch using combined method of "classical breeding" and "genome breeding." Firstly, a thermo-tolerable L-lysine-producing C. glutamicum strain KT45-6 was obtained after multi-round of acclimatization at high temperature. Then, amylolytic enzymes were introduced into strain KT45-6, and the resultant strains could use starch for cell growth and L-lysine production except the strain with expression of isoamylase. In addition, co-expression of amylolytic enzymes showed a good performance in starch degradation, cell growth and L-lysine production, especially co-expression of α-amylase (AA) and glucoamylase (GA). Moreover, L-lysine yield was increased by introducing AA-GA fusion protein (i.e., strain KT45-6S-5), and finally reached to 23.9 ± 2.3 g/L in CgXIIIPM-medium. It is the first report of an engineered L-lysine-producing strain with maximum starch utilization that may be used as workhorse for producing amino acid using starch as the main feedstock. KEY POINTS: • Thermo-tolerable C. glutamicum was obtained by temperature-induced adaptive evolution. • The fusion order between AA and GA affects the utilization efficiency of starch. • C. glutamicum with starch utilization was constructed by optimizing amylases expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI