Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics

计算机科学 机器学习 人工智能 广告 药代动力学 医学 药理学
作者
Ryosaku Ota,Fumiyoshi Yamashita
出处
期刊:Journal of Controlled Release [Elsevier BV]
卷期号:352: 961-969 被引量:39
标识
DOI:10.1016/j.jconrel.2022.11.014
摘要

In this review, we describe the current status and challenges in applying machine-learning techniques to the analysis and prediction of pharmacokinetic data. The theory of pharmacokinetics has been developed over decades on the basis of physiology and reaction kinetics. Mathematical models allow the reduction of pharmacokinetic data to parameter values, giving insight and understanding into ADME processes and predicting the outcome of different dosing scenarios. However, much information hidden in the data is lost through conceptual simplification with models. It is difficult to use mechanistic models alone to predict diverse pharmacokinetic time profiles, including inter-drug and inter-individual differences, in a cross-sectional manner. Machine learning is a prediction platform that can handle complex phenomena through data-driven analysis. As a resule, machine learning has been successfully adopted in various fields, including image recognition and language processing, and has been used for over two decades in pharmacokinetic research, primarily in the area of quantitative structure-activity relationships for pharmacokinetic parameters. Machine-learning models are generally known to provide better predictive performance than conventional linear models. Owing to the recent success in deep learning, models with new structures are being consistently proposed. These models include transfer learning and generative adversarial networks, which contribute to the effective use of a limited amount of data by diverting existing similar models or generating pseudo-data. How to make such newly emerging machine learning technologies applicable to meet challenges in the pharmacokinetics/pharmacodynamics field is now the key issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
辛勤的小蜜蜂完成签到 ,获得积分10
3秒前
不配.应助张鱼小丸子采纳,获得20
3秒前
3秒前
秦小旋儿发布了新的文献求助10
3秒前
4秒前
up完成签到 ,获得积分10
5秒前
6秒前
阿鑫发布了新的文献求助10
8秒前
9秒前
Mason发布了新的文献求助10
9秒前
keyanzhang完成签到 ,获得积分10
9秒前
CodeCraft应助无情的宛菡采纳,获得10
10秒前
10秒前
隐形曼青应助Ran采纳,获得10
12秒前
13秒前
13秒前
16秒前
16秒前
19秒前
阿鑫发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
科研通AI6应助欣慰的太阳采纳,获得10
20秒前
杜大帅发布了新的文献求助10
20秒前
小熊跳舞发布了新的文献求助10
22秒前
AliceCute发布了新的文献求助10
22秒前
Windowsmile完成签到,获得积分10
23秒前
23秒前
Ran发布了新的文献求助10
23秒前
小蘑菇应助问雁采纳,获得10
24秒前
guoze完成签到,获得积分10
24秒前
25秒前
25秒前
小蘑菇应助A拉拉拉采纳,获得10
26秒前
一怡以异完成签到,获得积分10
27秒前
27秒前
27秒前
天堂之光举报天天求助涉嫌违规
28秒前
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4201928
求助须知:如何正确求助?哪些是违规求助? 3736722
关于积分的说明 11766109
捐赠科研通 3409160
什么是DOI,文献DOI怎么找? 1870511
邀请新用户注册赠送积分活动 926092
科研通“疑难数据库(出版商)”最低求助积分说明 836385