Improving prediction of treatment response and prognosis in colorectal cancer with AI-based medical image analysis

结直肠癌 医学 内科学 人工智能 肿瘤科 癌症 计算机科学
作者
Xiangyu Liu,Song Zhang,Lizhi Shao,Caixia Sun,Bao Li,Wei Wei,Zuobin Ying,Zhenyu Liu,Jie Tian
标识
DOI:10.59717/j.xinn-med.2024.100069
摘要

<p>The heterogeneous response and prognosis of patients with colorectal cancer (CRC) to standard treatment regimens remains a challenge for clinical management. Individually weak prognostic markers, defined by gene mutations and protein expression, are difficult to apply in routine clinical practice because of their high acquisition cost and mediocre prediction accuracy. Visual evaluation of medical images, including radiology and digital pathology images, is an important part of CRC management. With the rapid development of artificial intelligence (AI), high-dimensional imaging features other than visual information are increasingly being used to develop imaging markers. At different stages of treatment, accurate predictions of treatment response and prognosis may help in selecting patients and tailoring their treatment. Here, we review the current state of AI applied to the medical imaging of CRC and describe its recent progress in short-term response and long-term survival prediction. In addition, we illustrate how these AI-based approaches may affect clinical decision-making. Although few approaches have been applied in routine clinical practice, their results are promising. Finally, we discuss the challenges in applying AI in clinical practice and possible future solutions from three perspectives: model interpretability, model generalizability, and patient privacy protection. This comprehensive assessment underscores the transformative potential of AI in CRC management and emphasizes the need for further exploration and integration into routine clinical workflows.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴天完成签到,获得积分10
1秒前
2秒前
zhanglin发布了新的文献求助10
3秒前
帅的罪鸽认了完成签到,获得积分10
3秒前
4秒前
mmj完成签到 ,获得积分10
4秒前
5秒前
5秒前
echo完成签到,获得积分10
5秒前
6秒前
菠萝水手完成签到,获得积分10
6秒前
deng203发布了新的文献求助10
7秒前
7秒前
星辰大海应助yyy采纳,获得10
7秒前
小马甲应助benhzh采纳,获得10
8秒前
Jasper应助学术laji采纳,获得10
9秒前
又是一年发布了新的文献求助10
10秒前
hannah发布了新的文献求助10
10秒前
11秒前
嘿嘿嘿发布了新的文献求助10
12秒前
情怀应助伍六柒采纳,获得10
12秒前
13秒前
14秒前
15秒前
今夜有雨完成签到 ,获得积分10
17秒前
shuang0116应助deng203采纳,获得10
17秒前
17秒前
欢呼凡旋完成签到,获得积分10
18秒前
18秒前
懒羊羊大王完成签到 ,获得积分10
19秒前
20秒前
benhzh发布了新的文献求助10
20秒前
cdercder应助xzy998采纳,获得10
21秒前
雪白的乐巧完成签到,获得积分10
21秒前
23秒前
结实半邪完成签到,获得积分10
25秒前
26秒前
hannah完成签到,获得积分10
27秒前
热爱生活完成签到,获得积分10
28秒前
29秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790