Exploring the mechanisms by which common inhalational anesthetics influence malignant tumor metastasis: A data mining study based on comparative toxicogenomic databases

转移 医学 数据库 生物信息学 生物 癌症 计算机科学 内科学
作者
Yiyu Chen,Wenjun Ouyang,Haitao Lv,Wei Chen
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:289: 117660-117660
标识
DOI:10.1016/j.ecoenv.2024.117660
摘要

Surgery remains the primary treatment for solid malignant tumors, but controlling postoperative tumor recurrence and metastasis continues to be a major challenge. Understanding the factors that influence tumor recurrence and metastasis after surgery, as well as the underlying biological mechanisms, is critical. Previous studies suggest that anesthetic agents may increase the risk of tumor recurrence and metastasis in patients with cancer, but the mechanisms underlying these findings remain unclear. In this study, we utilized toxicogenomics and comparative toxicogenomic databases to analyze data and explore the potential mechanisms by which three commonly used inhalational anesthetics-sevoflurane, isoflurane, and halothane-might promote malignant tumor metastasis. The results identified 18 genes that may be associated with tumor metastasis. Functional enrichment analysis revealed that these anesthetics could influence tumor cell migration by activating signaling pathways such as the IL-17 and tumor necrosis factor signaling pathways, thereby potentially inducing tumor metastasis. Moreover, by constructing a TF-mRNA network, we predicted several transcription factors that might play key roles in anesthetic-induced tumor metastasis. The analysis revealed a total of 87 regulatory relationships between transcription factors and mRNA. These findings offer new insights for future in vivo or in vitro studies and contribute to a better understanding of the relationship between inhalational anesthetics and tumor metastasis, providing valuable reference points for clinical decision-making. The results of this study also provide a reference for the determination of subsequent clinical treatment targets. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荷兰香猪完成签到,获得积分10
2秒前
Arrebol发布了新的文献求助10
2秒前
Sunziy完成签到,获得积分10
3秒前
3秒前
星辰完成签到,获得积分10
4秒前
4秒前
4秒前
瘦瘦秋凌完成签到 ,获得积分10
5秒前
5秒前
5秒前
7秒前
cccyuzhi发布了新的文献求助10
7秒前
威威完成签到,获得积分10
8秒前
小橙同学完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
hodi完成签到,获得积分10
9秒前
收手吧大哥应助光轮2000采纳,获得10
9秒前
姜月完成签到,获得积分10
10秒前
夏花_秋叶发布了新的文献求助10
10秒前
10秒前
10秒前
zimu012发布了新的文献求助10
10秒前
科研通AI5应助欣喜灵槐采纳,获得10
11秒前
kytwenxian完成签到,获得积分10
11秒前
11秒前
12秒前
飘逸鸽子完成签到,获得积分10
12秒前
Ava应助姜月采纳,获得10
14秒前
jahcenia发布了新的文献求助20
14秒前
SPUwangshunfeng完成签到,获得积分10
15秒前
cccyuzhi完成签到,获得积分10
16秒前
机灵绣连完成签到,获得积分10
16秒前
17秒前
klasjhndfo完成签到,获得积分10
18秒前
suer玉完成签到,获得积分10
19秒前
LBQ完成签到,获得积分10
20秒前
耶梨大王完成签到 ,获得积分20
21秒前
Yuao完成签到 ,获得积分10
21秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5023773
求助须知:如何正确求助?哪些是违规求助? 4261100
关于积分的说明 13280570
捐赠科研通 4067879
什么是DOI,文献DOI怎么找? 2225055
邀请新用户注册赠送积分活动 1233767
关于科研通互助平台的介绍 1157731