Exploring the mechanisms by which common inhalational anesthetics influence malignant tumor metastasis: A data mining study based on comparative toxicogenomic databases

转移 医学 数据库 生物信息学 生物 癌症 计算机科学 内科学
作者
Yiyu Chen,Wenjun Ouyang,Haitao Lv,Wei Chen
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:289: 117660-117660
标识
DOI:10.1016/j.ecoenv.2024.117660
摘要

Surgery remains the primary treatment for solid malignant tumors, but controlling postoperative tumor recurrence and metastasis continues to be a major challenge. Understanding the factors that influence tumor recurrence and metastasis after surgery, as well as the underlying biological mechanisms, is critical. Previous studies suggest that anesthetic agents may increase the risk of tumor recurrence and metastasis in patients with cancer, but the mechanisms underlying these findings remain unclear. In this study, we utilized toxicogenomics and comparative toxicogenomic databases to analyze data and explore the potential mechanisms by which three commonly used inhalational anesthetics-sevoflurane, isoflurane, and halothane-might promote malignant tumor metastasis. The results identified 18 genes that may be associated with tumor metastasis. Functional enrichment analysis revealed that these anesthetics could influence tumor cell migration by activating signaling pathways such as the IL-17 and tumor necrosis factor signaling pathways, thereby potentially inducing tumor metastasis. Moreover, by constructing a TF-mRNA network, we predicted several transcription factors that might play key roles in anesthetic-induced tumor metastasis. The analysis revealed a total of 87 regulatory relationships between transcription factors and mRNA. These findings offer new insights for future in vivo or in vitro studies and contribute to a better understanding of the relationship between inhalational anesthetics and tumor metastasis, providing valuable reference points for clinical decision-making. The results of this study also provide a reference for the determination of subsequent clinical treatment targets. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波诡云翳完成签到,获得积分10
1秒前
点墨完成签到 ,获得积分10
3秒前
Zheng完成签到 ,获得积分10
11秒前
追寻惋清完成签到 ,获得积分10
16秒前
fwl完成签到 ,获得积分10
19秒前
19秒前
了晨完成签到 ,获得积分10
20秒前
钱塘郎中完成签到,获得积分0
20秒前
吃饱了就晒太阳完成签到,获得积分10
21秒前
小灰灰完成签到,获得积分0
21秒前
王妍完成签到 ,获得积分10
21秒前
小米的稻田完成签到 ,获得积分10
23秒前
zhang完成签到 ,获得积分10
24秒前
maclogos发布了新的文献求助10
25秒前
xiayu完成签到 ,获得积分10
29秒前
Orange应助meng采纳,获得30
32秒前
Owen应助摩登灰太狼采纳,获得10
34秒前
moroa完成签到,获得积分10
36秒前
39秒前
王道远发布了新的文献求助100
39秒前
王旭东完成签到 ,获得积分10
40秒前
Graham完成签到,获得积分10
40秒前
42秒前
Aurora完成签到 ,获得积分10
43秒前
cs发布了新的文献求助10
43秒前
zsj完成签到,获得积分10
43秒前
花盛完成签到,获得积分10
44秒前
44秒前
46秒前
英俊的如霜完成签到,获得积分10
46秒前
47秒前
科研浩完成签到 ,获得积分10
54秒前
hyxu678完成签到,获得积分10
55秒前
cdercder应助科研通管家采纳,获得10
56秒前
56秒前
四然应助科研通管家采纳,获得10
56秒前
xzn1123应助科研通管家采纳,获得10
56秒前
JTHe应助科研通管家采纳,获得10
56秒前
Xiaoxiao应助科研通管家采纳,获得10
56秒前
orixero应助科研通管家采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776082
求助须知:如何正确求助?哪些是违规求助? 3321667
关于积分的说明 10206543
捐赠科研通 3036730
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841