避障
控制理论(社会学)
计算机科学
跟踪误差
弹道
控制器(灌溉)
趋同(经济学)
障碍物
人工神经网络
跟踪(教育)
过程(计算)
避碰
控制工程
控制(管理)
碰撞
工程类
移动机器人
人工智能
机器人
天文
经济增长
农学
心理学
政治学
教育学
法学
经济
物理
操作系统
计算机安全
生物
作者
Yingxin Shou,Bin Xu,Haibo Lu,Aidong Zhang,Tao Mei
摘要
Abstract The finite‐time formation tracking control is investigated for a multi‐agent system (MAS) with obstacle avoidance. For the collision and obstacle avoidance problem in the formation process, the artificial potential field is used as the formation planning design, and the virtual structure is adopted to improve the organizational ability of the formation. The trajectory tracking control follows the back‐stepping scheme, and the finite‐time technique is developed in the control design. Considering the dynamics uncertainty of the agent system, a neural network is applied for estimating and the prediction error‐based adaptive law is established to achieve the precise estimation performance. Moreover, the predefined performance function is embedded to satisfy the output constraint. The uniformly ultimate boundedness of the system error signals and the finite‐time convergence of the MAS are guaranteed. The simulation study is performed to validate the proposed control for multiple autonomous underwater vehicles system, while the results manifest that the obstacle avoidance with high‐precision tracking and formation performance will be achieved under the formation trajectory tracking controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI