Anchors Crash Tensor: Efficient and Scalable Tensorial Multi-view Subspace Clustering

计算机科学 聚类分析 张量(固有定义) 子空间拓扑 可扩展性 人工智能 撞车 模式识别(心理学) 数据挖掘 数学 程序设计语言 数据库 纯数学
作者
Jintian Ji,Songhe Feng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17 被引量:1
标识
DOI:10.1109/tpami.2025.3526790
摘要

Tensorial Multi-view Clustering (TMC), a prominent approach in multi-view clustering, leverages low-rank tensor learning to capture high-order correlation among views for consistent clustering structure identification. Despite its promising performance, the TMC algorithms face three key challenges: 1). The severe computational burden makes it difficult for TMC methods to handle large-scale datasets. 2). Estimation bias problem caused by the convex surrogate of the tensor rank. 3). Lack of explicit balance of consistency and complementarity. Being aware of these, we propose a basic framework Efficient and Scalable Tensorial Multi-View Subspace Clustering (ESTMC) for large-scale multi-view clustering. ESTMC integrates anchor representation learning and non-convex function-based low-rank tensor learning with a Generalized Non-convex Tensor Rank (GNTR) into a unified objective function, which enhances the efficiency of the existing subspace-based TMC framework. Furthermore, a novel model ESTMC-C with the proposed Enhanced Tensor Rank (ETR), Consistent Geometric Regularization (CGR), and Tensorial Exclusive Regularization (TER) is extended to balance the learning of consistency and complementarity among views, delivering divisible representations for the clustering task. Efficient iterative optimization algorithms are designed to solve the proposed ESTMC and ESTMC-C, which enjoy time-economical complexity and exhibit theoretical convergence. Extensive experimental results on various datasets demonstrate the superiority of the proposed algorithms as compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我不困完成签到,获得积分10
1秒前
铜锣湾小研仔应助Robin采纳,获得10
1秒前
1秒前
小宋应助Zyq采纳,获得10
1秒前
刘刘发布了新的文献求助10
5秒前
5秒前
7秒前
陈成应助jessie采纳,获得20
7秒前
科研通AI5应助ljs采纳,获得10
9秒前
Wuhuijing发布了新的文献求助10
13秒前
科研通AI5应助百里采纳,获得30
14秒前
chenhua5460完成签到,获得积分10
15秒前
15秒前
赘婿应助梁业采纳,获得10
16秒前
18秒前
19秒前
20秒前
科研通AI5应助dpk采纳,获得10
21秒前
哦哟发布了新的文献求助10
22秒前
CodeCraft应助Wuhuijing采纳,获得10
22秒前
拉姆发布了新的文献求助10
23秒前
图治完成签到,获得积分10
24秒前
张伟完成签到,获得积分10
25秒前
25秒前
幽默的友灵完成签到,获得积分10
25秒前
tourist585完成签到,获得积分10
27秒前
ljs发布了新的文献求助10
27秒前
雪白的幻枫完成签到 ,获得积分10
28秒前
29秒前
Akim应助拉姆采纳,获得10
30秒前
jiajia完成签到 ,获得积分10
30秒前
榴莲发布了新的文献求助10
30秒前
34秒前
赘婿应助无限帆布鞋采纳,获得30
35秒前
Skywalker完成签到,获得积分10
38秒前
肃肃其羽完成签到 ,获得积分10
39秒前
40秒前
destiny完成签到 ,获得积分10
42秒前
TangWL完成签到 ,获得积分10
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386137
关于积分的说明 10543851
捐赠科研通 3106858
什么是DOI,文献DOI怎么找? 1711183
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774409