Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network

卷积神经网络 人工智能 神经影像学 认知障碍 深度学习 计算机科学 学习迁移 模式识别(心理学) 机器学习 医学 疾病 病理 精神科
作者
Deevyankar Agarwal,M. Álvaro Berbís,Antonio Luna,Vivian Lipari,Julien Brito Ballester,Isabel Torre-Díez
出处
期刊:Journal of Medical Systems [Springer Science+Business Media]
卷期号:47 (1)
标识
DOI:10.1007/s10916-023-01941-4
摘要

Alzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach-"fusion of end-to-end and transfer learning"-to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助T拐拐采纳,获得10
1秒前
Lucas应助年轻板凳采纳,获得10
3秒前
背后归尘完成签到,获得积分10
3秒前
我是老大应助张科研采纳,获得10
5秒前
jin完成签到,获得积分10
5秒前
7秒前
伶俐芷珊完成签到,获得积分10
8秒前
8秒前
大个应助Tzzl0226采纳,获得10
8秒前
颗粒完成签到,获得积分10
10秒前
荀煜祺完成签到,获得积分10
11秒前
13秒前
T拐拐发布了新的文献求助10
13秒前
研友_8Y2DXL完成签到,获得积分10
13秒前
阿文完成签到,获得积分10
14秒前
yy发布了新的文献求助10
18秒前
英俊的铭应助manan采纳,获得10
18秒前
我爱螺蛳粉完成签到 ,获得积分10
20秒前
上官若男应助heheha采纳,获得10
21秒前
陈花蕾完成签到 ,获得积分10
22秒前
karean完成签到,获得积分20
25秒前
陶一二完成签到,获得积分10
27秒前
思源应助彭佳丽采纳,获得10
28秒前
Akim应助满意之玉采纳,获得10
29秒前
李子维完成签到 ,获得积分10
32秒前
龙眼完成签到,获得积分10
33秒前
33秒前
苹果灵槐发布了新的文献求助10
34秒前
了该完成签到,获得积分10
34秒前
35秒前
37秒前
Tzzl0226发布了新的文献求助10
38秒前
39秒前
思源应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
多啦a萌完成签到,获得积分10
41秒前
ding应助科研通管家采纳,获得10
41秒前
星辰大海应助科研通管家采纳,获得10
41秒前
烟花应助科研通管家采纳,获得10
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986