A Data-Related Patch Proposal for Semantic Segmentation of Aerial Images

计算机科学 种植 分割 趋同(经济学) 培训(气象学) 人工智能 采样(信号处理) 样品(材料) 图像分割 机器学习 数据挖掘 模式识别(心理学) 计算机视觉 农业 化学 经济 物理 气象学 滤波器(信号处理) 生物 经济增长 色谱法 生态学
作者
Lianlei Shan,Zhao Guiqin,Jun Xie,Peirui Cheng,Xiaobin Li,Zhepeng Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3327390
摘要

Large-size images cannot be directly put into GPU for training and need to be cropped to patches due to GPU memory limitation. The commonly used cropping methods before are random cropping and sequential cropping, which are crude and fatally inefficient. Firstly, categories of datasets are often imbalanced, and just simple cropping misses an excellent opportunity to make the data distribution balanced. Secondly, the training needs to crop a large number of patches to cover all patterns, which greatly increases the training time. This problem is of great practical hazards but is often overlooked by previous works. The optimal solution is to generate valuable patches. Valuable patches refer to the value to network training, i.e., the value of this patch for the convergence of the network, and the improvement of the accuracy. To this end, we propose a data-related patch proposal strategy to sample high valuable patches. The core idea is to score each patch according to the accuracy of each category, so as to perform balanced sampling. Compared with random cropping or sequential cropping, our method can improve the segmentation accuracy and accelerate the training vastly. Moreover, our method also shows great advantages over the loss-based balanced approaches. Experiments on Deepglobe and Potsdam show the excellent effect of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen举报waneshi求助涉嫌违规
2秒前
共享精神应助靳欣妍采纳,获得10
3秒前
玖月完成签到,获得积分10
4秒前
7秒前
Jasper应助lihanyan666采纳,获得10
8秒前
李爱国应助张雯思采纳,获得10
8秒前
小蘑菇应助张雯思采纳,获得10
8秒前
深情安青应助张雯思采纳,获得10
8秒前
天天快乐应助张雯思采纳,获得10
8秒前
ding应助张雯思采纳,获得10
8秒前
隐形曼青应助张雯思采纳,获得10
8秒前
科研通AI5应助张雯思采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
无曲应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
喜悦的依琴完成签到,获得积分10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
科研助手6应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得20
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
科研之光应助科研通管家采纳,获得10
10秒前
10秒前
椋鸟应助科研通管家采纳,获得10
10秒前
zzjjxx应助科研通管家采纳,获得10
10秒前
科研助手6应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
drizzling完成签到,获得积分10
11秒前
斯文尔阳完成签到,获得积分10
11秒前
小鹿发布了新的文献求助10
12秒前
13秒前
NexusExplorer应助changjing5638采纳,获得20
14秒前
15秒前
汉堡包应助雷浩采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960