Prediction of genome-wide imipenem resistance features in Klebsiella pneumoniae using machine learning

亚胺培南 肺炎克雷伯菌 小桶 抗生素耐药性 生物 抗药性 基因 表型 全基因组测序 计算生物学 基因组 微生物学 遗传学 抗生素 大肠杆菌 基因本体论 基因表达
作者
Shanshan Li,Jun Wu,Nan Ma,Wenjia Liu,Mengjie Shao,Nanjiao Ying,Lei Zhu
出处
期刊:Journal of Medical Microbiology [Microbiology Society]
卷期号:72 (2)
标识
DOI:10.1099/jmm.0.001657
摘要

Introduction. The resistance rate of Klebsiella pneumoniae (K. pneumoniae) to imipenem is increasing year by year, and the imipenem resistance mechanism of K. pneumoniae is complex. Therefore, it is urgent to develop new strategies to explore the resistance mechanism of imipenem for its effective and accurate use in clinical practice.Hypothesis/Gap sStatement. Machine learning could identify resistance features and biological process that influence microbial resistance from whole-genome sequencing (WGS) data.Aims. This work aimed to predict imipenem resistance genetic features in K. pneumoniae from whole-genome k-mer features, and analyse their function for understanding its resistance mechanism.Methods. This study analysed WGS data of K. pneumoniae combined with resistance phenotype for imipenem, and established K. pneumoniae to imipenem genotype-phenotype model to predict resistance features using chi-squared test and random forest. An external clinical dataset was used to verify prediction power of resistance features. The potential genes were identified through alignment the resistance features with the K. pneumoniae reference genome using blastn, the functions of potential genes were further analysed to explore its resistance-related signalling pathways with GO and KEGG analysis, the resistance sequence patterns were screened using streme software. Finally, the resistance features were combined and modelled through four machine-learning algorithms (logistic regression, SVM, GBDT and XGBoost) to evaluate their phenotype prediction ability.Results. A total of 16 670 imipenem resistance features were predicted from genotype-phenotype model. The 30 potential genes were identified by annotating the resistance features and corresponded to known antibiotic-related genes (mdtM, dedA, rne, etc.). GO and KEGG pathway analyses indicated the possible association of imipenem resistance with metabolism process and cell membrane. CRYCAGCDN and CGRDAAAN were found from the imipenem resistance features, which were widely presented in the reported β-lactam resistance genes (blaSHV, blaCTX-M, blaTEM, etc.), and YCYAGCMCAST with metabolic functions (organic substance metabolic process, nitrogen compound metabolic process and cellular metabolic process) was identified from the top 50 resistance features. The 25 resistance genes in the training dataset included 19 genes in the external dataset, which verified the accuracy of prediction. The area under curve values of logistics regression, SVM, GBDT and XGBoost were 0.965, 0.966, 0.969 and 0.969, respectively, indicating that the imipenem resistance features have a strong prediction power.Conclusion. Machine-learning methods could effectively predict the imipenem resistance feature in K. pneumoniae, and provide resistance sequence profiles for predicting resistance phenotype and exploring potential resistance mechanisms. It provides an important insight into the potential therapeutic strategies of K. pneumoniae resistance to imipenem, and speed up the application of machine learning in routine diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mmj完成签到 ,获得积分10
1秒前
2秒前
2秒前
echo完成签到,获得积分10
2秒前
3秒前
菠萝水手完成签到,获得积分10
3秒前
deng203发布了新的文献求助10
4秒前
4秒前
星辰大海应助yyy采纳,获得10
4秒前
小马甲应助benhzh采纳,获得10
5秒前
Jasper应助学术laji采纳,获得10
6秒前
又是一年发布了新的文献求助10
7秒前
hannah发布了新的文献求助10
7秒前
8秒前
嘿嘿嘿发布了新的文献求助10
9秒前
情怀应助伍六柒采纳,获得10
9秒前
10秒前
11秒前
12秒前
今夜有雨完成签到 ,获得积分10
14秒前
shuang0116应助deng203采纳,获得10
14秒前
14秒前
欢呼凡旋完成签到,获得积分10
15秒前
15秒前
懒羊羊大王完成签到 ,获得积分10
16秒前
17秒前
benhzh发布了新的文献求助10
17秒前
cdercder应助xzy998采纳,获得10
18秒前
雪白的乐巧完成签到,获得积分10
18秒前
20秒前
结实半邪完成签到,获得积分10
22秒前
23秒前
hannah完成签到,获得积分10
24秒前
热爱生活完成签到,获得积分10
25秒前
26秒前
苏东方完成签到,获得积分10
27秒前
27秒前
小半完成签到 ,获得积分10
28秒前
花生仁完成签到,获得积分20
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790