Chemometric Classification of Motor Oils Using 1H NMR Spectroscopy With Simultaneous Phase and Baseline Optimization

光谱学 基线(sea) 化学计量学 核磁共振波谱 相(物质) 分析化学(期刊) 校准 化学 核磁共振 色谱法 数学 物理 有机化学 统计 地质学 海洋学 量子力学
作者
Andrzej Olejniczak,Jerzy P. Łukaszewicz
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:38 (12)
标识
DOI:10.1002/cem.3598
摘要

ABSTRACT Here, we demonstrate mid‐field 1 H NMR spectroscopy combined with chemometrics to be powerful in the classification and authentication of motor oils (MOs). The 1 H NMR data were processed with a new algorithm for simultaneous phase and baseline correction, which, for crowded spectra such as those of the refinery products, allowed for more accurate estimation of phase parameters than other literature approaches tested. A principal component analysis (PCA) model based on the unbinned CH 3 fingerprint region (0.6–1.0 ppm) enabled the differentiation of hydrocracked and poly‐α‐olefin‐based MOs and was effective in resolving mixtures of these base stocks with conventional base oils. PCA analysis of the 1.0‐ to 1.14‐ppm region enabled the detection of poly (isobutylene) additive and was useful for differentiating between single‐grade and multigrade MOs. Non‐equidistantly binned 1 H NMR data were used to detect the addition of esters and to establish discriminant models for classifying MOs by viscosity grade and by major categories of synthetic, semisynthetic, and mineral oils. The performances of four classifiers (linear discriminant analysis [LDA], quadratic discriminant analysis [QDA], naïve Bayes classifier [NBC], and support vector machine [SVM]) with and without PCA dimensionality reduction were compared. In both tasks, SVM showed the best efficiency, with average error rates of ~2.3% and 8.15% for predicting major MO categories and viscosity grades, respectively. The potential to merge spectra collected from different NMR instruments is discussed for models based on spectral binning. It is also shown that small errors in phase parameters are not detrimental to binning‐based PCA models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
辛勤的小蜜蜂完成签到 ,获得积分10
2秒前
不配.应助张鱼小丸子采纳,获得20
2秒前
2秒前
秦小旋儿发布了新的文献求助10
2秒前
3秒前
up完成签到 ,获得积分10
4秒前
5秒前
阿鑫发布了新的文献求助10
7秒前
8秒前
Mason发布了新的文献求助10
8秒前
keyanzhang完成签到 ,获得积分10
8秒前
CodeCraft应助无情的宛菡采纳,获得10
9秒前
9秒前
隐形曼青应助Ran采纳,获得10
11秒前
12秒前
12秒前
15秒前
15秒前
18秒前
阿鑫发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI6应助欣慰的太阳采纳,获得10
19秒前
杜大帅发布了新的文献求助10
19秒前
小熊跳舞发布了新的文献求助10
21秒前
AliceCute发布了新的文献求助10
21秒前
Windowsmile完成签到,获得积分10
22秒前
22秒前
Ran发布了新的文献求助10
22秒前
小蘑菇应助问雁采纳,获得10
23秒前
guoze完成签到,获得积分10
23秒前
24秒前
24秒前
小蘑菇应助A拉拉拉采纳,获得10
25秒前
一怡以异完成签到,获得积分10
26秒前
26秒前
26秒前
天堂之光举报天天求助涉嫌违规
27秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4201928
求助须知:如何正确求助?哪些是违规求助? 3736722
关于积分的说明 11766109
捐赠科研通 3409160
什么是DOI,文献DOI怎么找? 1870511
邀请新用户注册赠送积分活动 926092
科研通“疑难数据库(出版商)”最低求助积分说明 836385