A two‐stage network with prior knowledge guidance for medullary thyroid carcinoma recognition in ultrasound images

甲状腺结节 分割 人工智能 计算机科学 超声波 甲状腺癌 放射科 模式识别(心理学) 阶段(地层学) Sørensen–骰子系数 医学 图像分割 甲状腺 生物 内科学 古生物学
作者
Lin Pan,Yanjing Cai,Ning Lin,Linxin Yang,Shaohua Zheng,Liqin Huang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (4): 2413-2426 被引量:6
标识
DOI:10.1002/mp.15492
摘要

Accurate recognition of medullary thyroid carcinoma (MTC) is of great importance in medical diagnosis, as MTC is rare but second-most malignant thyroid cancers with a high case-fatality ratio.1 But there is a lower recognition rate on distinguishing MTC from other thyroid nodules in ultrasound images, even by experienced experts. This paper introduces the computer-aided method to tackle the challenge of recognizing MTC from ultrasound images, including limited MTC samples, and ambiguities among MTC, benign nodules, and papillary thyroid carcinoma (PTC).The recognition of MTC based on large MTC samples of ultrasound images has never been explored, as only one existing work presented a relevant dataset with a limited 21 MTC samples. This study proposes a novel method for primarily differentiating MTC samples from benign nodules and PTC that is the most common thyroid cancer. Our method is a two-stage schema with two important components including a cascaded coarse-to-fine segmentation network and a knowledge-based classification network. The cascaded coarse-to-fine segmentation network incorporates two U-Net++ networks for improving the segmentation results of thyroid nodules. Meanwhile, our knowledge-based classification network extracts and fuses semantic features of solid tissues and calcification for better recognizing the segmented nodules from the ultrasound images. In our experiments, dice similarity coefficient (DSC), intersection over union (IoU), precision, recall, and Hausdorff distance (HD) are adopted for evaluating the segmentation results of thyroid nodules, and accuracy, precision, recall, and F1-score are used for classification evaluation.We present a well-annotated dataset including samples of 248 MTC, 240 benign nodules, and 239 PTC. For thyroid nodule segmentation, our designed cascaded segmentation network attains values of 0.776 DSC, 0.689 IoU, 0.778 precision, and 0.821 recall, respectively. By incorporating prior knowledge, our method achieves a mean accuracy of 82.1% in classifying thyroid nodules of MTC, PTC, and benign ones. Especially, our method gains the higher performance in recognizing MTC with an accuracy of 86.8%, compared to nearly 70% diagnosis accuracy of experienced doctors. The experimental results on our Fujian Provincial Hospital dataset further validate the efficiency of our proposed method.Our proposed two-stage method incorporates pipelines of thyroid nodules segmentation and classification of MTC, individually. Quantitative and qualitative results indicate that our proposed model achieves accurate segmentation of thyroid nodules. The results also validate that our learning-based framework facilitates the recognition of MTC, which gains better classification accuracy than experienced doctors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
清脆泥猴桃完成签到,获得积分10
3秒前
执着白筠发布了新的文献求助10
3秒前
大个应助29采纳,获得10
4秒前
yang完成签到,获得积分10
5秒前
小杜老师发布了新的文献求助10
5秒前
8秒前
辛紫璇发布了新的文献求助10
9秒前
张六六完成签到,获得积分10
9秒前
小肥脸完成签到 ,获得积分10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
12秒前
GH完成签到,获得积分10
13秒前
14秒前
berryman发布了新的文献求助10
14秒前
15秒前
asd0817完成签到,获得积分10
17秒前
Hopping完成签到 ,获得积分10
18秒前
zho应助唠叨的以柳采纳,获得10
19秒前
29发布了新的文献求助10
20秒前
华仔应助执着白筠采纳,获得10
20秒前
直率的钢铁侠完成签到,获得积分10
21秒前
21秒前
lagom发布了新的文献求助10
21秒前
23秒前
香蕉觅云应助CC采纳,获得30
24秒前
爱上多hi完成签到,获得积分10
25秒前
25秒前
28秒前
卡迪力亚发布了新的文献求助10
28秒前
大胆隶完成签到 ,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5177587
求助须知:如何正确求助?哪些是违规求助? 4366107
关于积分的说明 13594320
捐赠科研通 4216344
什么是DOI,文献DOI怎么找? 2312489
邀请新用户注册赠送积分活动 1311237
关于科研通互助平台的介绍 1259474