Machine learning-assisted exploration of thermally conductive polymers based on high-throughput molecular dynamics simulations

热导率 材料科学 聚合物 电导率 分子动力学 热传导 工作(物理) 导电聚合物 无定形固体 机器学习 热力学 计算机科学 复合材料 物理 计算化学 物理化学 有机化学 化学
作者
Ruimin Ma,Hanfeng Zhang,Jiaxin Xu,Luning Sun,Yoshihiro Hayashi,Ryo Yoshida,Junichiro Shiomi,Jianxun Wang,Tengfei Luo
出处
期刊:Materials Today Physics [Elsevier]
卷期号:28: 100850-100850 被引量:59
标识
DOI:10.1016/j.mtphys.2022.100850
摘要

Finding amorphous polymers with higher thermal conductivity is important, as they are ubiquitous in a wide range of applications where heat transfer is important. With recent progress in material informatics, machine learning approaches have been increasingly adopted for finding or designing materials with desired properties. However, limited effort has been put on finding thermally conductive polymers using machine learning, mainly due to the lack of polymer thermal conductivity databases with reasonable data volume. In this work, we combine high-throughput molecular dynamics (MD) simulations and machine learning to explore polymers with relatively high thermal conductivity (>0.300 W/m-K) – a statistically important threshold as most neat polymers have thermal conductivity lower than this value under normal conditions. We first randomly select 365 polymers from the existing PoLyInfo database and calculate their thermal conductivity using MD simulations. The data are then employed to train a machine learning regression model to quantify the structure-thermal conductivity relation, which is further leveraged to screen polymer candidates in the PoLyInfo database with thermal conductivity >0.300 W/m-K. 121 polymers with MD-calculated thermal conductivity above this threshold are eventually identified. Polymers with a wide range of thermal conductivity values are selected for re-calculation under different simulation conditions, and those polymers found with thermal conductivity above 0.300 W/m-K are mostly calculated to maintain values above this threshold despite fluctuation in the exact values. Given the observed uncertainties in the MD-calculated TC, we have also constructed a Bayesian neural network to evaluate the epistemic and aleatoric prediction uncertainties, where a state-of-the-art approximate Bayesian inference algorithm is used for scalable training. The strategy and results from this work may contribute to automating the design of polymers with high thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助星期一采纳,获得30
刚刚
2秒前
现代白玉发布了新的文献求助10
2秒前
2秒前
完美的奇异果完成签到 ,获得积分10
4秒前
5秒前
特别会说话完成签到,获得积分20
5秒前
linney0325发布了新的文献求助10
6秒前
marryhh发布了新的文献求助10
6秒前
牛牛的牛牛完成签到 ,获得积分10
6秒前
ardejiang发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
缓慢笑珊完成签到,获得积分10
9秒前
10秒前
11秒前
踏实青梦发布了新的文献求助10
11秒前
11秒前
12秒前
Willow发布了新的文献求助10
13秒前
cl发布了新的文献求助10
13秒前
Owen应助张菲菲采纳,获得10
13秒前
勤奋海燕关注了科研通微信公众号
13秒前
0110发布了新的文献求助10
13秒前
fang完成签到,获得积分10
15秒前
nikehy完成签到,获得积分10
15秒前
稳重傲白发布了新的文献求助10
17秒前
huangchenxi完成签到 ,获得积分10
17秒前
17秒前
小丹小丹完成签到 ,获得积分10
18秒前
852应助Mei采纳,获得10
18秒前
zy发布了新的文献求助10
18秒前
科研通AI6应助wangli采纳,获得10
19秒前
19秒前
Hello应助marryhh采纳,获得10
19秒前
星辰大海应助Vic采纳,获得10
20秒前
正切发布了新的文献求助10
20秒前
杨阳驳回了Jasper应助
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076