“Growth Predictor”: A new predictive modelling and quantitative microbial risk assessment tool

风险评估 预测建模 计算机科学 机器学习 计算机安全
作者
Panagiotis Skandamis
出处
期刊:Food Research International [Elsevier BV]
卷期号:: 116329-116329
标识
DOI:10.1016/j.foodres.2025.116329
摘要

A new predictive modelling and quantitative microbial risk assessment (QMRA) software, developed in R, is available on-line (https://skandamis.shinyapps.io/Microbial-Growth-Predictor-Dashboard/). Primary model fitting is carried out with the Baranyi model. Secondary fitting and growth simulations are based on gamma models with or without interactions. The same gamma terms can be used for fitting and growth simulations under static or dynamic conditions. One of the novel features is the use of normal distributions to describe the variability in T, pH, aw, the levels of a single inhibitor and the inter-strain variability in growth limits. The QMRA is comprised of four consecutive modules from primary production until consumption. In addition to prevalence, the modules may also consider partition, mixing and cross-contamination. Variability can be introduced through a variety of probability distributions, for initial contamination, re-contamination, storage time and temperature, product characteristics, serving size and maximum population density. Fixed or variable log reductions during cooking, may be introduced as user-defined values or probability distributions, respectively, or estimated by a Bigelow thermal inactivation model. The trilinear primary growth model is used for estimating log changes, based on μmax obtained by gamma models. The QMRA outputs include graphical distribution of ingested dose and probability of illness (Pill), as well as tabular estimates. The user may select built-in dose-response models, or define the parameters values of exponential, beta-Poisson, beta-binomial and binomial dose-response models. The tool is intended for multiple users from the scientific community, the authorities and the food industry, for growth simulations and high-resolution risk assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1m4完成签到,获得积分10
刚刚
魅力蜗牛完成签到,获得积分10
1秒前
1秒前
1秒前
眼睛大怀曼完成签到,获得积分10
1秒前
sugy发布了新的文献求助10
2秒前
2秒前
MrH发布了新的文献求助10
3秒前
sunnyfriend完成签到,获得积分10
3秒前
4秒前
杰帅完成签到,获得积分10
4秒前
5秒前
小姜醒醒发布了新的文献求助10
5秒前
Crema完成签到,获得积分10
5秒前
lhhhh发布了新的文献求助10
6秒前
雪掩的往事完成签到,获得积分10
6秒前
7秒前
7秒前
假装有昵称完成签到,获得积分10
8秒前
fosca完成签到,获得积分10
8秒前
时尚的沧海完成签到,获得积分10
8秒前
Lucas应助无名采纳,获得10
8秒前
8秒前
酷波er应助淡然的怀柔采纳,获得10
8秒前
伴夏完成签到,获得积分10
9秒前
义气碧菡发布了新的文献求助10
9秒前
涂图完成签到,获得积分20
10秒前
njhuxs发布了新的文献求助10
10秒前
随机完成签到,获得积分10
10秒前
10秒前
啊啊发布了新的文献求助10
11秒前
StevenZhao完成签到,获得积分0
12秒前
鱿鱼发布了新的文献求助10
12秒前
holo完成签到,获得积分10
12秒前
科研通AI5应助勤劳志泽采纳,获得50
12秒前
传奇3应助锣大炮采纳,获得10
12秒前
13秒前
林夏发布了新的文献求助10
13秒前
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838008
求助须知:如何正确求助?哪些是违规求助? 3380253
关于积分的说明 10513110
捐赠科研通 3099862
什么是DOI,文献DOI怎么找? 1707244
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772744